Whakaoti mō y
y=\frac{3x}{2\left(2-3x\right)}
x\neq \frac{2}{3}
Whakaoti mō x
x=\frac{4y}{3\left(2y+1\right)}
y\neq -\frac{1}{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\times 6\left(-2y-1\right)=-8y
Tē taea kia ōrite te tāupe y ki -\frac{1}{2} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 6\left(-2y-1\right).
-12xy-x\times 6=-8y
Whakamahia te āhuatanga tohatoha hei whakarea te x\times 6 ki te -2y-1.
-12xy-6x=-8y
Whakareatia te -1 ki te 6, ka -6.
-12xy-6x+8y=0
Me tāpiri te 8y ki ngā taha e rua.
-12xy+8y=6x
Me tāpiri te 6x ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\left(-12x+8\right)y=6x
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\left(8-12x\right)y=6x
He hanga arowhānui tō te whārite.
\frac{\left(8-12x\right)y}{8-12x}=\frac{6x}{8-12x}
Whakawehea ngā taha e rua ki te -12x+8.
y=\frac{6x}{8-12x}
Mā te whakawehe ki te -12x+8 ka wetekia te whakareanga ki te -12x+8.
y=\frac{3x}{2\left(2-3x\right)}
Whakawehe 6x ki te -12x+8.
y=\frac{3x}{2\left(2-3x\right)}\text{, }y\neq -\frac{1}{2}
Tē taea kia ōrite te tāupe y ki -\frac{1}{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}