Whakaoti mō x
x = \frac{\sqrt{73} + 7}{4} \approx 3.886000936
x=\frac{7-\sqrt{73}}{4}\approx -0.386000936
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
x= \frac{ (2x-3) \times (2x+3) }{ 4 { x }^{ 2 } -16x+15 }
Tohaina
Kua tāruatia ki te papatopenga
x=\frac{\left(2x\right)^{2}-9}{4x^{2}-16x+15}
Whakaarohia te \left(2x-3\right)\left(2x+3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
x=\frac{2^{2}x^{2}-9}{4x^{2}-16x+15}
Whakarohaina te \left(2x\right)^{2}.
x=\frac{4x^{2}-9}{4x^{2}-16x+15}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
x-\frac{4x^{2}-9}{4x^{2}-16x+15}=0
Tangohia te \frac{4x^{2}-9}{4x^{2}-16x+15} mai i ngā taha e rua.
x-\frac{4x^{2}-9}{\left(2x-5\right)\left(2x-3\right)}=0
Tauwehea te 4x^{2}-16x+15.
\frac{x\left(2x-5\right)\left(2x-3\right)}{\left(2x-5\right)\left(2x-3\right)}-\frac{4x^{2}-9}{\left(2x-5\right)\left(2x-3\right)}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x ki te \frac{\left(2x-5\right)\left(2x-3\right)}{\left(2x-5\right)\left(2x-3\right)}.
\frac{x\left(2x-5\right)\left(2x-3\right)-\left(4x^{2}-9\right)}{\left(2x-5\right)\left(2x-3\right)}=0
Tā te mea he rite te tauraro o \frac{x\left(2x-5\right)\left(2x-3\right)}{\left(2x-5\right)\left(2x-3\right)} me \frac{4x^{2}-9}{\left(2x-5\right)\left(2x-3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{4x^{3}-6x^{2}-10x^{2}+15x-4x^{2}+9}{\left(2x-5\right)\left(2x-3\right)}=0
Mahia ngā whakarea i roto o x\left(2x-5\right)\left(2x-3\right)-\left(4x^{2}-9\right).
\frac{4x^{3}-20x^{2}+15x+9}{\left(2x-5\right)\left(2x-3\right)}=0
Whakakotahitia ngā kupu rite i 4x^{3}-6x^{2}-10x^{2}+15x-4x^{2}+9.
4x^{3}-20x^{2}+15x+9=0
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara \frac{3}{2},\frac{5}{2} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(2x-5\right)\left(2x-3\right).
±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{4},±\frac{1}{2},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 9, ā, ka wehea e q te whakarea arahanga 4. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=\frac{3}{2}
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
2x^{2}-7x-3=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 4x^{3}-20x^{2}+15x+9 ki te 2\left(x-\frac{3}{2}\right)=2x-3, kia riro ko 2x^{2}-7x-3. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 2 mō te a, te -7 mō te b, me te -3 mō te c i te ture pūrua.
x=\frac{7±\sqrt{73}}{4}
Mahia ngā tātaitai.
x=\frac{7-\sqrt{73}}{4} x=\frac{\sqrt{73}+7}{4}
Whakaotia te whārite 2x^{2}-7x-3=0 ina he tōrunga te ±, ina he tōraro te ±.
x\in \emptyset
Tangohia ngā uara e kore e ōrite ki te taurangi.
x=\frac{3}{2} x=\frac{7-\sqrt{73}}{4} x=\frac{\sqrt{73}+7}{4}
Rārangitia ngā otinga katoa i kitea.
x=\frac{\sqrt{73}+7}{4} x=\frac{7-\sqrt{73}}{4}
Tē taea kia ōrite te tāupe x ki \frac{3}{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}