Whakaoti mō x
x=2\sqrt{481}-42\approx 1.863424399
x=-2\sqrt{481}-42\approx -85.863424399
Graph
Tohaina
Kua tāruatia ki te papatopenga
xx+x\times 84=160
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x^{2}+x\times 84=160
Whakareatia te x ki te x, ka x^{2}.
x^{2}+x\times 84-160=0
Tangohia te 160 mai i ngā taha e rua.
x^{2}+84x-160=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-84±\sqrt{84^{2}-4\left(-160\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 84 mō b, me -160 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-84±\sqrt{7056-4\left(-160\right)}}{2}
Pūrua 84.
x=\frac{-84±\sqrt{7056+640}}{2}
Whakareatia -4 ki te -160.
x=\frac{-84±\sqrt{7696}}{2}
Tāpiri 7056 ki te 640.
x=\frac{-84±4\sqrt{481}}{2}
Tuhia te pūtakerua o te 7696.
x=\frac{4\sqrt{481}-84}{2}
Nā, me whakaoti te whārite x=\frac{-84±4\sqrt{481}}{2} ina he tāpiri te ±. Tāpiri -84 ki te 4\sqrt{481}.
x=2\sqrt{481}-42
Whakawehe -84+4\sqrt{481} ki te 2.
x=\frac{-4\sqrt{481}-84}{2}
Nā, me whakaoti te whārite x=\frac{-84±4\sqrt{481}}{2} ina he tango te ±. Tango 4\sqrt{481} mai i -84.
x=-2\sqrt{481}-42
Whakawehe -84-4\sqrt{481} ki te 2.
x=2\sqrt{481}-42 x=-2\sqrt{481}-42
Kua oti te whārite te whakatau.
xx+x\times 84=160
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x^{2}+x\times 84=160
Whakareatia te x ki te x, ka x^{2}.
x^{2}+84x=160
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+84x+42^{2}=160+42^{2}
Whakawehea te 84, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 42. Nā, tāpiria te pūrua o te 42 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+84x+1764=160+1764
Pūrua 42.
x^{2}+84x+1764=1924
Tāpiri 160 ki te 1764.
\left(x+42\right)^{2}=1924
Tauwehea x^{2}+84x+1764. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+42\right)^{2}}=\sqrt{1924}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+42=2\sqrt{481} x+42=-2\sqrt{481}
Whakarūnātia.
x=2\sqrt{481}-42 x=-2\sqrt{481}-42
Me tango 42 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}