Whakaoti mō x
x=\frac{5y}{6}-\frac{y_{2}}{2}-\frac{10}{3}
Whakaoti mō y
y=\frac{3y_{2}}{5}+\frac{6x}{5}+4
Graph
Tohaina
Kua tāruatia ki te papatopenga
-6x+5-3y_{2}+5y=25
Pahekotia te x me -7x, ka -6x.
-6x-3y_{2}+5y=25-5
Tangohia te 5 mai i ngā taha e rua.
-6x-3y_{2}+5y=20
Tangohia te 5 i te 25, ka 20.
-6x+5y=20+3y_{2}
Me tāpiri te 3y_{2} ki ngā taha e rua.
-6x=20+3y_{2}-5y
Tangohia te 5y mai i ngā taha e rua.
\frac{-6x}{-6}=\frac{20+3y_{2}-5y}{-6}
Whakawehea ngā taha e rua ki te -6.
x=\frac{20+3y_{2}-5y}{-6}
Mā te whakawehe ki te -6 ka wetekia te whakareanga ki te -6.
x=\frac{5y}{6}-\frac{y_{2}}{2}-\frac{10}{3}
Whakawehe 20+3y_{2}-5y ki te -6.
-6x+5-3y_{2}+5y=25
Pahekotia te x me -7x, ka -6x.
5-3y_{2}+5y=25+6x
Me tāpiri te 6x ki ngā taha e rua.
-3y_{2}+5y=25+6x-5
Tangohia te 5 mai i ngā taha e rua.
-3y_{2}+5y=20+6x
Tangohia te 5 i te 25, ka 20.
5y=20+6x+3y_{2}
Me tāpiri te 3y_{2} ki ngā taha e rua.
5y=6x+3y_{2}+20
He hanga arowhānui tō te whārite.
\frac{5y}{5}=\frac{6x+3y_{2}+20}{5}
Whakawehea ngā taha e rua ki te 5.
y=\frac{6x+3y_{2}+20}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
y=\frac{3y_{2}}{5}+\frac{6x}{5}+4
Whakawehe 20+6x+3y_{2} ki te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}