Whakaoti mō x
x = -\frac{40}{3} = -13\frac{1}{3} \approx -13.333333333
x=13
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+3x^{2}-520=0
Tangohia te 520 mai i ngā taha e rua.
3x^{2}+x-520=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=1 ab=3\left(-520\right)=-1560
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3x^{2}+ax+bx-520. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,1560 -2,780 -3,520 -4,390 -5,312 -6,260 -8,195 -10,156 -12,130 -13,120 -15,104 -20,78 -24,65 -26,60 -30,52 -39,40
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -1560.
-1+1560=1559 -2+780=778 -3+520=517 -4+390=386 -5+312=307 -6+260=254 -8+195=187 -10+156=146 -12+130=118 -13+120=107 -15+104=89 -20+78=58 -24+65=41 -26+60=34 -30+52=22 -39+40=1
Tātaihia te tapeke mō ia takirua.
a=-39 b=40
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(3x^{2}-39x\right)+\left(40x-520\right)
Tuhia anō te 3x^{2}+x-520 hei \left(3x^{2}-39x\right)+\left(40x-520\right).
3x\left(x-13\right)+40\left(x-13\right)
Tauwehea te 3x i te tuatahi me te 40 i te rōpū tuarua.
\left(x-13\right)\left(3x+40\right)
Whakatauwehea atu te kīanga pātahi x-13 mā te whakamahi i te āhuatanga tātai tohatoha.
x=13 x=-\frac{40}{3}
Hei kimi otinga whārite, me whakaoti te x-13=0 me te 3x+40=0.
3x^{2}+x=520
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
3x^{2}+x-520=520-520
Me tango 520 mai i ngā taha e rua o te whārite.
3x^{2}+x-520=0
Mā te tango i te 520 i a ia ake anō ka toe ko te 0.
x=\frac{-1±\sqrt{1^{2}-4\times 3\left(-520\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 1 mō b, me -520 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 3\left(-520\right)}}{2\times 3}
Pūrua 1.
x=\frac{-1±\sqrt{1-12\left(-520\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-1±\sqrt{1+6240}}{2\times 3}
Whakareatia -12 ki te -520.
x=\frac{-1±\sqrt{6241}}{2\times 3}
Tāpiri 1 ki te 6240.
x=\frac{-1±79}{2\times 3}
Tuhia te pūtakerua o te 6241.
x=\frac{-1±79}{6}
Whakareatia 2 ki te 3.
x=\frac{78}{6}
Nā, me whakaoti te whārite x=\frac{-1±79}{6} ina he tāpiri te ±. Tāpiri -1 ki te 79.
x=13
Whakawehe 78 ki te 6.
x=-\frac{80}{6}
Nā, me whakaoti te whārite x=\frac{-1±79}{6} ina he tango te ±. Tango 79 mai i -1.
x=-\frac{40}{3}
Whakahekea te hautanga \frac{-80}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=13 x=-\frac{40}{3}
Kua oti te whārite te whakatau.
3x^{2}+x=520
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{3x^{2}+x}{3}=\frac{520}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{1}{3}x=\frac{520}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\frac{520}{3}+\left(\frac{1}{6}\right)^{2}
Whakawehea te \frac{1}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{6}. Nā, tāpiria te pūrua o te \frac{1}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{520}{3}+\frac{1}{36}
Pūruatia \frac{1}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{6241}{36}
Tāpiri \frac{520}{3} ki te \frac{1}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{6}\right)^{2}=\frac{6241}{36}
Tauwehea x^{2}+\frac{1}{3}x+\frac{1}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{6241}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{6}=\frac{79}{6} x+\frac{1}{6}=-\frac{79}{6}
Whakarūnātia.
x=13 x=-\frac{40}{3}
Me tango \frac{1}{6} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}