Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x+2\right)^{2}=\left(\sqrt{4-x^{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}+4x+4=\left(\sqrt{4-x^{2}}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
x^{2}+4x+4=4-x^{2}
Tātaihia te \sqrt{4-x^{2}} mā te pū o 2, kia riro ko 4-x^{2}.
x^{2}+4x+4-4=-x^{2}
Tangohia te 4 mai i ngā taha e rua.
x^{2}+4x=-x^{2}
Tangohia te 4 i te 4, ka 0.
x^{2}+4x+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
2x^{2}+4x=0
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
x\left(2x+4\right)=0
Tauwehea te x.
x=0 x=-2
Hei kimi otinga whārite, me whakaoti te x=0 me te 2x+4=0.
0+2=\sqrt{4-0^{2}}
Whakakapia te 0 mō te x i te whārite x+2=\sqrt{4-x^{2}}.
2=2
Whakarūnātia. Ko te uara x=0 kua ngata te whārite.
-2+2=\sqrt{4-\left(-2\right)^{2}}
Whakakapia te -2 mō te x i te whārite x+2=\sqrt{4-x^{2}}.
0=0
Whakarūnātia. Ko te uara x=-2 kua ngata te whārite.
x=0 x=-2
Rārangihia ngā rongoā katoa o x+2=\sqrt{4-x^{2}}.