Whakaoti mō x
x=-2
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+2\right)^{2}=\left(\sqrt{4-x^{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}+4x+4=\left(\sqrt{4-x^{2}}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
x^{2}+4x+4=4-x^{2}
Tātaihia te \sqrt{4-x^{2}} mā te pū o 2, kia riro ko 4-x^{2}.
x^{2}+4x+4-4=-x^{2}
Tangohia te 4 mai i ngā taha e rua.
x^{2}+4x=-x^{2}
Tangohia te 4 i te 4, ka 0.
x^{2}+4x+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
2x^{2}+4x=0
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
x\left(2x+4\right)=0
Tauwehea te x.
x=0 x=-2
Hei kimi otinga whārite, me whakaoti te x=0 me te 2x+4=0.
0+2=\sqrt{4-0^{2}}
Whakakapia te 0 mō te x i te whārite x+2=\sqrt{4-x^{2}}.
2=2
Whakarūnātia. Ko te uara x=0 kua ngata te whārite.
-2+2=\sqrt{4-\left(-2\right)^{2}}
Whakakapia te -2 mō te x i te whārite x+2=\sqrt{4-x^{2}}.
0=0
Whakarūnātia. Ko te uara x=-2 kua ngata te whārite.
x=0 x=-2
Rārangihia ngā rongoā katoa o x+2=\sqrt{4-x^{2}}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}