Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+x-3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\left(-3\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1-4\left(-3\right)}}{2}
Pūrua 1.
x=\frac{-1±\sqrt{1+12}}{2}
Whakareatia -4 ki te -3.
x=\frac{-1±\sqrt{13}}{2}
Tāpiri 1 ki te 12.
x=\frac{\sqrt{13}-1}{2}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{13}}{2} ina he tāpiri te ±. Tāpiri -1 ki te \sqrt{13}.
x=\frac{-\sqrt{13}-1}{2}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{13}}{2} ina he tango te ±. Tango \sqrt{13} mai i -1.
x^{2}+x-3=\left(x-\frac{\sqrt{13}-1}{2}\right)\left(x-\frac{-\sqrt{13}-1}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-1+\sqrt{13}}{2} mō te x_{1} me te \frac{-1-\sqrt{13}}{2} mō te x_{2}.