Whakaoti mō x
x=100
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{x}=110-x
Me tango x mai i ngā taha e rua o te whārite.
\left(\sqrt{x}\right)^{2}=\left(110-x\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x=\left(110-x\right)^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x=12100-220x+x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(110-x\right)^{2}.
x-12100=-220x+x^{2}
Tangohia te 12100 mai i ngā taha e rua.
x-12100+220x=x^{2}
Me tāpiri te 220x ki ngā taha e rua.
221x-12100=x^{2}
Pahekotia te x me 220x, ka 221x.
221x-12100-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}+221x-12100=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-221±\sqrt{221^{2}-4\left(-1\right)\left(-12100\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 221 mō b, me -12100 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-221±\sqrt{48841-4\left(-1\right)\left(-12100\right)}}{2\left(-1\right)}
Pūrua 221.
x=\frac{-221±\sqrt{48841+4\left(-12100\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-221±\sqrt{48841-48400}}{2\left(-1\right)}
Whakareatia 4 ki te -12100.
x=\frac{-221±\sqrt{441}}{2\left(-1\right)}
Tāpiri 48841 ki te -48400.
x=\frac{-221±21}{2\left(-1\right)}
Tuhia te pūtakerua o te 441.
x=\frac{-221±21}{-2}
Whakareatia 2 ki te -1.
x=-\frac{200}{-2}
Nā, me whakaoti te whārite x=\frac{-221±21}{-2} ina he tāpiri te ±. Tāpiri -221 ki te 21.
x=100
Whakawehe -200 ki te -2.
x=-\frac{242}{-2}
Nā, me whakaoti te whārite x=\frac{-221±21}{-2} ina he tango te ±. Tango 21 mai i -221.
x=121
Whakawehe -242 ki te -2.
x=100 x=121
Kua oti te whārite te whakatau.
100+\sqrt{100}=110
Whakakapia te 100 mō te x i te whārite x+\sqrt{x}=110.
110=110
Whakarūnātia. Ko te uara x=100 kua ngata te whārite.
121+\sqrt{121}=110
Whakakapia te 121 mō te x i te whārite x+\sqrt{x}=110.
132=110
Whakarūnātia. Ko te uara x=121 kāore e ngata ana ki te whārite.
x=100
Ko te whārite \sqrt{x}=110-x he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}