Whakaoti mō x
x=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{5x+19}=-1-x
Me tango x mai i ngā taha e rua o te whārite.
\left(\sqrt{5x+19}\right)^{2}=\left(-1-x\right)^{2}
Pūruatia ngā taha e rua o te whārite.
5x+19=\left(-1-x\right)^{2}
Tātaihia te \sqrt{5x+19} mā te pū o 2, kia riro ko 5x+19.
5x+19=1+2x+x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-1-x\right)^{2}.
5x+19-1=2x+x^{2}
Tangohia te 1 mai i ngā taha e rua.
5x+18=2x+x^{2}
Tangohia te 1 i te 19, ka 18.
5x+18-2x=x^{2}
Tangohia te 2x mai i ngā taha e rua.
3x+18=x^{2}
Pahekotia te 5x me -2x, ka 3x.
3x+18-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}+3x+18=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=3 ab=-18=-18
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+18. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,18 -2,9 -3,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -18.
-1+18=17 -2+9=7 -3+6=3
Tātaihia te tapeke mō ia takirua.
a=6 b=-3
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(-x^{2}+6x\right)+\left(-3x+18\right)
Tuhia anō te -x^{2}+3x+18 hei \left(-x^{2}+6x\right)+\left(-3x+18\right).
-x\left(x-6\right)-3\left(x-6\right)
Tauwehea te -x i te tuatahi me te -3 i te rōpū tuarua.
\left(x-6\right)\left(-x-3\right)
Whakatauwehea atu te kīanga pātahi x-6 mā te whakamahi i te āhuatanga tātai tohatoha.
x=6 x=-3
Hei kimi otinga whārite, me whakaoti te x-6=0 me te -x-3=0.
6+\sqrt{5\times 6+19}=-1
Whakakapia te 6 mō te x i te whārite x+\sqrt{5x+19}=-1.
13=-1
Whakarūnātia. Ko te uara x=6 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
-3+\sqrt{5\left(-3\right)+19}=-1
Whakakapia te -3 mō te x i te whārite x+\sqrt{5x+19}=-1.
-1=-1
Whakarūnātia. Ko te uara x=-3 kua ngata te whārite.
x=-3
Ko te whārite \sqrt{5x+19}=-x-1 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}