Whakaoti mō x
x=\frac{3}{5}=0.6
x=\frac{3}{4}=0.75
Graph
Tohaina
Kua tāruatia ki te papatopenga
20xx+9=27x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 20x, arā, te tauraro pātahi he tino iti rawa te kitea o 20x,20.
20x^{2}+9=27x
Whakareatia te x ki te x, ka x^{2}.
20x^{2}+9-27x=0
Tangohia te 27x mai i ngā taha e rua.
20x^{2}-27x+9=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-27 ab=20\times 9=180
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 20x^{2}+ax+bx+9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-180 -2,-90 -3,-60 -4,-45 -5,-36 -6,-30 -9,-20 -10,-18 -12,-15
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 180.
-1-180=-181 -2-90=-92 -3-60=-63 -4-45=-49 -5-36=-41 -6-30=-36 -9-20=-29 -10-18=-28 -12-15=-27
Tātaihia te tapeke mō ia takirua.
a=-15 b=-12
Ko te otinga te takirua ka hoatu i te tapeke -27.
\left(20x^{2}-15x\right)+\left(-12x+9\right)
Tuhia anō te 20x^{2}-27x+9 hei \left(20x^{2}-15x\right)+\left(-12x+9\right).
5x\left(4x-3\right)-3\left(4x-3\right)
Tauwehea te 5x i te tuatahi me te -3 i te rōpū tuarua.
\left(4x-3\right)\left(5x-3\right)
Whakatauwehea atu te kīanga pātahi 4x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{3}{4} x=\frac{3}{5}
Hei kimi otinga whārite, me whakaoti te 4x-3=0 me te 5x-3=0.
20xx+9=27x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 20x, arā, te tauraro pātahi he tino iti rawa te kitea o 20x,20.
20x^{2}+9=27x
Whakareatia te x ki te x, ka x^{2}.
20x^{2}+9-27x=0
Tangohia te 27x mai i ngā taha e rua.
20x^{2}-27x+9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 20\times 9}}{2\times 20}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 20 mō a, -27 mō b, me 9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-27\right)±\sqrt{729-4\times 20\times 9}}{2\times 20}
Pūrua -27.
x=\frac{-\left(-27\right)±\sqrt{729-80\times 9}}{2\times 20}
Whakareatia -4 ki te 20.
x=\frac{-\left(-27\right)±\sqrt{729-720}}{2\times 20}
Whakareatia -80 ki te 9.
x=\frac{-\left(-27\right)±\sqrt{9}}{2\times 20}
Tāpiri 729 ki te -720.
x=\frac{-\left(-27\right)±3}{2\times 20}
Tuhia te pūtakerua o te 9.
x=\frac{27±3}{2\times 20}
Ko te tauaro o -27 ko 27.
x=\frac{27±3}{40}
Whakareatia 2 ki te 20.
x=\frac{30}{40}
Nā, me whakaoti te whārite x=\frac{27±3}{40} ina he tāpiri te ±. Tāpiri 27 ki te 3.
x=\frac{3}{4}
Whakahekea te hautanga \frac{30}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x=\frac{24}{40}
Nā, me whakaoti te whārite x=\frac{27±3}{40} ina he tango te ±. Tango 3 mai i 27.
x=\frac{3}{5}
Whakahekea te hautanga \frac{24}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x=\frac{3}{4} x=\frac{3}{5}
Kua oti te whārite te whakatau.
20xx+9=27x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 20x, arā, te tauraro pātahi he tino iti rawa te kitea o 20x,20.
20x^{2}+9=27x
Whakareatia te x ki te x, ka x^{2}.
20x^{2}+9-27x=0
Tangohia te 27x mai i ngā taha e rua.
20x^{2}-27x=-9
Tangohia te 9 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{20x^{2}-27x}{20}=-\frac{9}{20}
Whakawehea ngā taha e rua ki te 20.
x^{2}-\frac{27}{20}x=-\frac{9}{20}
Mā te whakawehe ki te 20 ka wetekia te whakareanga ki te 20.
x^{2}-\frac{27}{20}x+\left(-\frac{27}{40}\right)^{2}=-\frac{9}{20}+\left(-\frac{27}{40}\right)^{2}
Whakawehea te -\frac{27}{20}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{27}{40}. Nā, tāpiria te pūrua o te -\frac{27}{40} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{27}{20}x+\frac{729}{1600}=-\frac{9}{20}+\frac{729}{1600}
Pūruatia -\frac{27}{40} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{27}{20}x+\frac{729}{1600}=\frac{9}{1600}
Tāpiri -\frac{9}{20} ki te \frac{729}{1600} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{27}{40}\right)^{2}=\frac{9}{1600}
Tauwehea x^{2}-\frac{27}{20}x+\frac{729}{1600}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{27}{40}\right)^{2}}=\sqrt{\frac{9}{1600}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{27}{40}=\frac{3}{40} x-\frac{27}{40}=-\frac{3}{40}
Whakarūnātia.
x=\frac{3}{4} x=\frac{3}{5}
Me tāpiri \frac{27}{40} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}