Tauwehe
y\left(y^{2}+1\right)\left(xy-1\right)
Aromātai
y\left(y^{2}+1\right)\left(xy-1\right)
Tohaina
Kua tāruatia ki te papatopenga
y\left(xy^{3}-y^{2}+xy-1\right)
Tauwehea te y.
y^{2}\left(xy-1\right)+xy-1
Whakaarohia te xy^{3}-y^{2}+xy-1. Mahia te whakarōpūtanga xy^{3}-y^{2}+xy-1=\left(xy^{3}-y^{2}\right)+\left(xy-1\right), ka whakatauwehea atu y^{2} i te xy^{3}-y^{2}.
\left(xy-1\right)\left(y^{2}+1\right)
Whakatauwehea atu te kīanga pātahi xy-1 mā te whakamahi i te āhuatanga tātai tohatoha.
y\left(xy-1\right)\left(y^{2}+1\right)
Me tuhi anō te kīanga whakatauwehe katoa. Kāore te pūrau y^{2}+1 i whakatauwehea i te mea kāhore ōna pūtake whakahau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}