x d x = \quad d ( 2 x ^ { 2 } + 3 )
Whakaoti mō d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&x=-\sqrt{3}i\text{ or }x=\sqrt{3}i\end{matrix}\right.
Whakaoti mō d
d=0
Whakaoti mō x (complex solution)
\left\{\begin{matrix}\\x=-\sqrt{3}i\text{; }x=\sqrt{3}i\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&d=0\end{matrix}\right.
Whakaoti mō x
x\in \mathrm{R}
d=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}d=d\left(2x^{2}+3\right)
Whakareatia te x ki te x, ka x^{2}.
x^{2}d=2dx^{2}+3d
Whakamahia te āhuatanga tohatoha hei whakarea te d ki te 2x^{2}+3.
x^{2}d-2dx^{2}=3d
Tangohia te 2dx^{2} mai i ngā taha e rua.
-x^{2}d=3d
Pahekotia te x^{2}d me -2dx^{2}, ka -x^{2}d.
-x^{2}d-3d=0
Tangohia te 3d mai i ngā taha e rua.
\left(-x^{2}-3\right)d=0
Pahekotia ngā kīanga tau katoa e whai ana i te d.
d=0
Whakawehe 0 ki te -x^{2}-3.
x^{2}d=d\left(2x^{2}+3\right)
Whakareatia te x ki te x, ka x^{2}.
x^{2}d=2dx^{2}+3d
Whakamahia te āhuatanga tohatoha hei whakarea te d ki te 2x^{2}+3.
x^{2}d-2dx^{2}=3d
Tangohia te 2dx^{2} mai i ngā taha e rua.
-x^{2}d=3d
Pahekotia te x^{2}d me -2dx^{2}, ka -x^{2}d.
-x^{2}d-3d=0
Tangohia te 3d mai i ngā taha e rua.
\left(-x^{2}-3\right)d=0
Pahekotia ngā kīanga tau katoa e whai ana i te d.
d=0
Whakawehe 0 ki te -x^{2}-3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}