Whakaoti mō k_D
\left\{\begin{matrix}k_{D}=\frac{T_{1}x_{a}e^{-\frac{t}{T_{1}}}}{x_{e}}\text{, }&x_{e}\neq 0\text{ and }T_{1}\neq 0\\k_{D}\in \mathrm{R}\text{, }&x_{a}=0\text{ and }x_{e}=0\text{ and }T_{1}\neq 0\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
x_{a}T_{1}=x_{e}k_{D}\times 1e^{\frac{t}{T_{1}}}
Whakareatia ngā taha e rua o te whārite ki te T_{1}.
x_{e}k_{D}\times 1e^{\frac{t}{T_{1}}}=x_{a}T_{1}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
k_{D}x_{e}e^{\frac{t}{T_{1}}}=T_{1}x_{a}
Whakaraupapatia anō ngā kīanga tau.
x_{e}e^{\frac{t}{T_{1}}}k_{D}=T_{1}x_{a}
He hanga arowhānui tō te whārite.
\frac{x_{e}e^{\frac{t}{T_{1}}}k_{D}}{x_{e}e^{\frac{t}{T_{1}}}}=\frac{T_{1}x_{a}}{x_{e}e^{\frac{t}{T_{1}}}}
Whakawehea ngā taha e rua ki te x_{e}e^{tT_{1}^{-1}}.
k_{D}=\frac{T_{1}x_{a}}{x_{e}e^{\frac{t}{T_{1}}}}
Mā te whakawehe ki te x_{e}e^{tT_{1}^{-1}} ka wetekia te whakareanga ki te x_{e}e^{tT_{1}^{-1}}.
k_{D}=\frac{T_{1}x_{a}e^{-\frac{t}{T_{1}}}}{x_{e}}
Whakawehe T_{1}x_{a} ki te x_{e}e^{tT_{1}^{-1}}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}