Aromātai
10x_{1}
Kimi Pārōnaki e ai ki x_1
10
Tohaina
Kua tāruatia ki te papatopenga
x_{1}\left(\frac{\sqrt{1}}{\sqrt{3}}+\sqrt{27}\right)\sqrt{3}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{3}}.
x_{1}\left(\frac{1}{\sqrt{3}}+\sqrt{27}\right)\sqrt{3}
Tātaitia te pūtakerua o 1 kia tae ki 1.
x_{1}\left(\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\sqrt{27}\right)\sqrt{3}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
x_{1}\left(\frac{\sqrt{3}}{3}+\sqrt{27}\right)\sqrt{3}
Ko te pūrua o \sqrt{3} ko 3.
x_{1}\left(\frac{\sqrt{3}}{3}+3\sqrt{3}\right)\sqrt{3}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
x_{1}\times \frac{10}{3}\sqrt{3}\sqrt{3}
Pahekotia te \frac{\sqrt{3}}{3} me 3\sqrt{3}, ka \frac{10}{3}\sqrt{3}.
x_{1}\times \frac{10}{3}\times 3
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
x_{1}\times 10
Me whakakore te 3 me te 3.
\frac{\mathrm{d}}{\mathrm{d}x_{1}}(x_{1}\left(\frac{\sqrt{1}}{\sqrt{3}}+\sqrt{27}\right)\sqrt{3})
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{3}}.
\frac{\mathrm{d}}{\mathrm{d}x_{1}}(x_{1}\left(\frac{1}{\sqrt{3}}+\sqrt{27}\right)\sqrt{3})
Tātaitia te pūtakerua o 1 kia tae ki 1.
\frac{\mathrm{d}}{\mathrm{d}x_{1}}(x_{1}\left(\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\sqrt{27}\right)\sqrt{3})
Whakangāwaritia te tauraro o \frac{1}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\mathrm{d}}{\mathrm{d}x_{1}}(x_{1}\left(\frac{\sqrt{3}}{3}+\sqrt{27}\right)\sqrt{3})
Ko te pūrua o \sqrt{3} ko 3.
\frac{\mathrm{d}}{\mathrm{d}x_{1}}(x_{1}\left(\frac{\sqrt{3}}{3}+3\sqrt{3}\right)\sqrt{3})
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
\frac{\mathrm{d}}{\mathrm{d}x_{1}}(x_{1}\times \frac{10}{3}\sqrt{3}\sqrt{3})
Pahekotia te \frac{\sqrt{3}}{3} me 3\sqrt{3}, ka \frac{10}{3}\sqrt{3}.
\frac{\mathrm{d}}{\mathrm{d}x_{1}}(x_{1}\times \frac{10}{3}\times 3)
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{\mathrm{d}}{\mathrm{d}x_{1}}(x_{1}\times 10)
Me whakakore te 3 me te 3.
10x_{1}^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
10x_{1}^{0}
Tango 1 mai i 1.
10\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
10
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}