Whakaoti mō x, y
x=32
y=27
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-y=5,-4x+5y=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+5
Me tāpiri y ki ngā taha e rua o te whārite.
-4\left(y+5\right)+5y=7
Whakakapia te y+5 mō te x ki tērā atu whārite, -4x+5y=7.
-4y-20+5y=7
Whakareatia -4 ki te y+5.
y-20=7
Tāpiri -4y ki te 5y.
y=27
Me tāpiri 20 ki ngā taha e rua o te whārite.
x=27+5
Whakaurua te 27 mō y ki x=y+5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=32
Tāpiri 5 ki te 27.
x=32,y=27
Kua oti te pūnaha te whakatau.
x-y=5,-4x+5y=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\-4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}1&-1\\-4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\-4&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-\left(-\left(-4\right)\right)}&-\frac{-1}{5-\left(-\left(-4\right)\right)}\\-\frac{-4}{5-\left(-\left(-4\right)\right)}&\frac{1}{5-\left(-\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5&1\\4&1\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\times 5+7\\4\times 5+7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}32\\27\end{matrix}\right)
Mahia ngā tātaitanga.
x=32,y=27
Tangohia ngā huānga poukapa x me y.
x-y=5,-4x+5y=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4x-4\left(-1\right)y=-4\times 5,-4x+5y=7
Kia ōrite ai a x me -4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-4x+4y=-20,-4x+5y=7
Whakarūnātia.
-4x+4x+4y-5y=-20-7
Me tango -4x+5y=7 mai i -4x+4y=-20 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y-5y=-20-7
Tāpiri -4x ki te 4x. Ka whakakore atu ngā kupu -4x me 4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=-20-7
Tāpiri 4y ki te -5y.
-y=-27
Tāpiri -20 ki te -7.
y=27
Whakawehea ngā taha e rua ki te -1.
-4x+5\times 27=7
Whakaurua te 27 mō y ki -4x+5y=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-4x+135=7
Whakareatia 5 ki te 27.
-4x=-128
Me tango 135 mai i ngā taha e rua o te whārite.
x=32
Whakawehea ngā taha e rua ki te -4.
x=32,y=27
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}