Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-x^{2}+x=\frac{5}{18}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
-x^{2}+x-\frac{5}{18}=\frac{5}{18}-\frac{5}{18}
Me tango \frac{5}{18} mai i ngā taha e rua o te whārite.
-x^{2}+x-\frac{5}{18}=0
Mā te tango i te \frac{5}{18} i a ia ake anō ka toe ko te 0.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\left(-\frac{5}{18}\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 1 mō b, me -\frac{5}{18} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-1\right)\left(-\frac{5}{18}\right)}}{2\left(-1\right)}
Pūrua 1.
x=\frac{-1±\sqrt{1+4\left(-\frac{5}{18}\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-1±\sqrt{1-\frac{10}{9}}}{2\left(-1\right)}
Whakareatia 4 ki te -\frac{5}{18}.
x=\frac{-1±\sqrt{-\frac{1}{9}}}{2\left(-1\right)}
Tāpiri 1 ki te -\frac{10}{9}.
x=\frac{-1±\frac{1}{3}i}{2\left(-1\right)}
Tuhia te pūtakerua o te -\frac{1}{9}.
x=\frac{-1±\frac{1}{3}i}{-2}
Whakareatia 2 ki te -1.
x=\frac{-1+\frac{1}{3}i}{-2}
Nā, me whakaoti te whārite x=\frac{-1±\frac{1}{3}i}{-2} ina he tāpiri te ±. Tāpiri -1 ki te \frac{1}{3}i.
x=\frac{1}{2}-\frac{1}{6}i
Whakawehe -1+\frac{1}{3}i ki te -2.
x=\frac{-1-\frac{1}{3}i}{-2}
Nā, me whakaoti te whārite x=\frac{-1±\frac{1}{3}i}{-2} ina he tango te ±. Tango \frac{1}{3}i mai i -1.
x=\frac{1}{2}+\frac{1}{6}i
Whakawehe -1-\frac{1}{3}i ki te -2.
x=\frac{1}{2}-\frac{1}{6}i x=\frac{1}{2}+\frac{1}{6}i
Kua oti te whārite te whakatau.
-x^{2}+x=\frac{5}{18}
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+x}{-1}=\frac{\frac{5}{18}}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{1}{-1}x=\frac{\frac{5}{18}}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-x=\frac{\frac{5}{18}}{-1}
Whakawehe 1 ki te -1.
x^{2}-x=-\frac{5}{18}
Whakawehe \frac{5}{18} ki te -1.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{5}{18}+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=-\frac{5}{18}+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=-\frac{1}{36}
Tāpiri -\frac{5}{18} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{2}\right)^{2}=-\frac{1}{36}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{1}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{1}{6}i x-\frac{1}{2}=-\frac{1}{6}i
Whakarūnātia.
x=\frac{1}{2}+\frac{1}{6}i x=\frac{1}{2}-\frac{1}{6}i
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.