Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-8x\left(x+6\right)=5x+3
Whakareatia te 4 ki te 2, ka 8.
x-8x\left(x+6\right)-5x=3
Tangohia te 5x mai i ngā taha e rua.
x-8x\left(x+6\right)-5x-3=0
Tangohia te 3 mai i ngā taha e rua.
x-8x^{2}-48x-5x-3=0
Whakamahia te āhuatanga tohatoha hei whakarea te -8x ki te x+6.
-47x-8x^{2}-5x-3=0
Pahekotia te x me -48x, ka -47x.
-52x-8x^{2}-3=0
Pahekotia te -47x me -5x, ka -52x.
-8x^{2}-52x-3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-52\right)±\sqrt{\left(-52\right)^{2}-4\left(-8\right)\left(-3\right)}}{2\left(-8\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -8 mō a, -52 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-52\right)±\sqrt{2704-4\left(-8\right)\left(-3\right)}}{2\left(-8\right)}
Pūrua -52.
x=\frac{-\left(-52\right)±\sqrt{2704+32\left(-3\right)}}{2\left(-8\right)}
Whakareatia -4 ki te -8.
x=\frac{-\left(-52\right)±\sqrt{2704-96}}{2\left(-8\right)}
Whakareatia 32 ki te -3.
x=\frac{-\left(-52\right)±\sqrt{2608}}{2\left(-8\right)}
Tāpiri 2704 ki te -96.
x=\frac{-\left(-52\right)±4\sqrt{163}}{2\left(-8\right)}
Tuhia te pūtakerua o te 2608.
x=\frac{52±4\sqrt{163}}{2\left(-8\right)}
Ko te tauaro o -52 ko 52.
x=\frac{52±4\sqrt{163}}{-16}
Whakareatia 2 ki te -8.
x=\frac{4\sqrt{163}+52}{-16}
Nā, me whakaoti te whārite x=\frac{52±4\sqrt{163}}{-16} ina he tāpiri te ±. Tāpiri 52 ki te 4\sqrt{163}.
x=\frac{-\sqrt{163}-13}{4}
Whakawehe 52+4\sqrt{163} ki te -16.
x=\frac{52-4\sqrt{163}}{-16}
Nā, me whakaoti te whārite x=\frac{52±4\sqrt{163}}{-16} ina he tango te ±. Tango 4\sqrt{163} mai i 52.
x=\frac{\sqrt{163}-13}{4}
Whakawehe 52-4\sqrt{163} ki te -16.
x=\frac{-\sqrt{163}-13}{4} x=\frac{\sqrt{163}-13}{4}
Kua oti te whārite te whakatau.
x-8x\left(x+6\right)=5x+3
Whakareatia te 4 ki te 2, ka 8.
x-8x\left(x+6\right)-5x=3
Tangohia te 5x mai i ngā taha e rua.
x-8x^{2}-48x-5x=3
Whakamahia te āhuatanga tohatoha hei whakarea te -8x ki te x+6.
-47x-8x^{2}-5x=3
Pahekotia te x me -48x, ka -47x.
-52x-8x^{2}=3
Pahekotia te -47x me -5x, ka -52x.
-8x^{2}-52x=3
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-8x^{2}-52x}{-8}=\frac{3}{-8}
Whakawehea ngā taha e rua ki te -8.
x^{2}+\left(-\frac{52}{-8}\right)x=\frac{3}{-8}
Mā te whakawehe ki te -8 ka wetekia te whakareanga ki te -8.
x^{2}+\frac{13}{2}x=\frac{3}{-8}
Whakahekea te hautanga \frac{-52}{-8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}+\frac{13}{2}x=-\frac{3}{8}
Whakawehe 3 ki te -8.
x^{2}+\frac{13}{2}x+\left(\frac{13}{4}\right)^{2}=-\frac{3}{8}+\left(\frac{13}{4}\right)^{2}
Whakawehea te \frac{13}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{13}{4}. Nā, tāpiria te pūrua o te \frac{13}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{13}{2}x+\frac{169}{16}=-\frac{3}{8}+\frac{169}{16}
Pūruatia \frac{13}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{13}{2}x+\frac{169}{16}=\frac{163}{16}
Tāpiri -\frac{3}{8} ki te \frac{169}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{13}{4}\right)^{2}=\frac{163}{16}
Tauwehea x^{2}+\frac{13}{2}x+\frac{169}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{4}\right)^{2}}=\sqrt{\frac{163}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{13}{4}=\frac{\sqrt{163}}{4} x+\frac{13}{4}=-\frac{\sqrt{163}}{4}
Whakarūnātia.
x=\frac{\sqrt{163}-13}{4} x=\frac{-\sqrt{163}-13}{4}
Me tango \frac{13}{4} mai i ngā taha e rua o te whārite.