Whakaoti mō x
x=-2
x=30
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-12\left(3\left(x-2\right)+11\right)=3\left(-\frac{x}{3}\right)\left(x+5\right)
Whakareatia ngā taha e rua o te whārite ki te 3.
3x-12\left(3x-6+11\right)=3\left(-\frac{x}{3}\right)\left(x+5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-2.
3x-12\left(3x+5\right)=3\left(-\frac{x}{3}\right)\left(x+5\right)
Tāpirihia te -6 ki te 11, ka 5.
3x-36x-60=3\left(-\frac{x}{3}\right)\left(x+5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -12 ki te 3x+5.
-33x-60=3\left(-\frac{x}{3}\right)\left(x+5\right)
Pahekotia te 3x me -36x, ka -33x.
-33x-60=\frac{-3x}{3}\left(x+5\right)
Tuhia te 3\left(-\frac{x}{3}\right) hei hautanga kotahi.
-33x-60=-x\left(x+5\right)
Me whakakore te 3 me te 3.
-33x-60=-x^{2}-5x
Whakamahia te āhuatanga tohatoha hei whakarea te -x ki te x+5.
-33x-60+x^{2}=-5x
Me tāpiri te x^{2} ki ngā taha e rua.
-33x-60+x^{2}+5x=0
Me tāpiri te 5x ki ngā taha e rua.
-28x-60+x^{2}=0
Pahekotia te -33x me 5x, ka -28x.
x^{2}-28x-60=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-28 ab=-60
Hei whakaoti i te whārite, whakatauwehea te x^{2}-28x-60 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Tātaihia te tapeke mō ia takirua.
a=-30 b=2
Ko te otinga te takirua ka hoatu i te tapeke -28.
\left(x-30\right)\left(x+2\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=30 x=-2
Hei kimi otinga whārite, me whakaoti te x-30=0 me te x+2=0.
3x-12\left(3\left(x-2\right)+11\right)=3\left(-\frac{x}{3}\right)\left(x+5\right)
Whakareatia ngā taha e rua o te whārite ki te 3.
3x-12\left(3x-6+11\right)=3\left(-\frac{x}{3}\right)\left(x+5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-2.
3x-12\left(3x+5\right)=3\left(-\frac{x}{3}\right)\left(x+5\right)
Tāpirihia te -6 ki te 11, ka 5.
3x-36x-60=3\left(-\frac{x}{3}\right)\left(x+5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -12 ki te 3x+5.
-33x-60=3\left(-\frac{x}{3}\right)\left(x+5\right)
Pahekotia te 3x me -36x, ka -33x.
-33x-60=\frac{-3x}{3}\left(x+5\right)
Tuhia te 3\left(-\frac{x}{3}\right) hei hautanga kotahi.
-33x-60=-x\left(x+5\right)
Me whakakore te 3 me te 3.
-33x-60=-x^{2}-5x
Whakamahia te āhuatanga tohatoha hei whakarea te -x ki te x+5.
-33x-60+x^{2}=-5x
Me tāpiri te x^{2} ki ngā taha e rua.
-33x-60+x^{2}+5x=0
Me tāpiri te 5x ki ngā taha e rua.
-28x-60+x^{2}=0
Pahekotia te -33x me 5x, ka -28x.
x^{2}-28x-60=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-28 ab=1\left(-60\right)=-60
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-60. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Tātaihia te tapeke mō ia takirua.
a=-30 b=2
Ko te otinga te takirua ka hoatu i te tapeke -28.
\left(x^{2}-30x\right)+\left(2x-60\right)
Tuhia anō te x^{2}-28x-60 hei \left(x^{2}-30x\right)+\left(2x-60\right).
x\left(x-30\right)+2\left(x-30\right)
Tauwehea te x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-30\right)\left(x+2\right)
Whakatauwehea atu te kīanga pātahi x-30 mā te whakamahi i te āhuatanga tātai tohatoha.
x=30 x=-2
Hei kimi otinga whārite, me whakaoti te x-30=0 me te x+2=0.
3x-12\left(3\left(x-2\right)+11\right)=3\left(-\frac{x}{3}\right)\left(x+5\right)
Whakareatia ngā taha e rua o te whārite ki te 3.
3x-12\left(3x-6+11\right)=3\left(-\frac{x}{3}\right)\left(x+5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-2.
3x-12\left(3x+5\right)=3\left(-\frac{x}{3}\right)\left(x+5\right)
Tāpirihia te -6 ki te 11, ka 5.
3x-36x-60=3\left(-\frac{x}{3}\right)\left(x+5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -12 ki te 3x+5.
-33x-60=3\left(-\frac{x}{3}\right)\left(x+5\right)
Pahekotia te 3x me -36x, ka -33x.
-33x-60=\frac{-3x}{3}\left(x+5\right)
Tuhia te 3\left(-\frac{x}{3}\right) hei hautanga kotahi.
-33x-60=-x\left(x+5\right)
Me whakakore te 3 me te 3.
-33x-60=-x^{2}-5x
Whakamahia te āhuatanga tohatoha hei whakarea te -x ki te x+5.
-33x-60+x^{2}=-5x
Me tāpiri te x^{2} ki ngā taha e rua.
-33x-60+x^{2}+5x=0
Me tāpiri te 5x ki ngā taha e rua.
-28x-60+x^{2}=0
Pahekotia te -33x me 5x, ka -28x.
x^{2}-28x-60=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\left(-60\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -28 mō b, me -60 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28\right)±\sqrt{784-4\left(-60\right)}}{2}
Pūrua -28.
x=\frac{-\left(-28\right)±\sqrt{784+240}}{2}
Whakareatia -4 ki te -60.
x=\frac{-\left(-28\right)±\sqrt{1024}}{2}
Tāpiri 784 ki te 240.
x=\frac{-\left(-28\right)±32}{2}
Tuhia te pūtakerua o te 1024.
x=\frac{28±32}{2}
Ko te tauaro o -28 ko 28.
x=\frac{60}{2}
Nā, me whakaoti te whārite x=\frac{28±32}{2} ina he tāpiri te ±. Tāpiri 28 ki te 32.
x=30
Whakawehe 60 ki te 2.
x=-\frac{4}{2}
Nā, me whakaoti te whārite x=\frac{28±32}{2} ina he tango te ±. Tango 32 mai i 28.
x=-2
Whakawehe -4 ki te 2.
x=30 x=-2
Kua oti te whārite te whakatau.
3x-12\left(3\left(x-2\right)+11\right)=3\left(-\frac{x}{3}\right)\left(x+5\right)
Whakareatia ngā taha e rua o te whārite ki te 3.
3x-12\left(3x-6+11\right)=3\left(-\frac{x}{3}\right)\left(x+5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-2.
3x-12\left(3x+5\right)=3\left(-\frac{x}{3}\right)\left(x+5\right)
Tāpirihia te -6 ki te 11, ka 5.
3x-36x-60=3\left(-\frac{x}{3}\right)\left(x+5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -12 ki te 3x+5.
-33x-60=3\left(-\frac{x}{3}\right)\left(x+5\right)
Pahekotia te 3x me -36x, ka -33x.
-33x-60=\frac{-3x}{3}\left(x+5\right)
Tuhia te 3\left(-\frac{x}{3}\right) hei hautanga kotahi.
-33x-60=-x\left(x+5\right)
Me whakakore te 3 me te 3.
-33x-60=-x^{2}-5x
Whakamahia te āhuatanga tohatoha hei whakarea te -x ki te x+5.
-33x-60+x^{2}=-5x
Me tāpiri te x^{2} ki ngā taha e rua.
-33x-60+x^{2}+5x=0
Me tāpiri te 5x ki ngā taha e rua.
-28x-60+x^{2}=0
Pahekotia te -33x me 5x, ka -28x.
-28x+x^{2}=60
Me tāpiri te 60 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}-28x=60
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-28x+\left(-14\right)^{2}=60+\left(-14\right)^{2}
Whakawehea te -28, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -14. Nā, tāpiria te pūrua o te -14 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-28x+196=60+196
Pūrua -14.
x^{2}-28x+196=256
Tāpiri 60 ki te 196.
\left(x-14\right)^{2}=256
Tauwehea x^{2}-28x+196. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-14\right)^{2}}=\sqrt{256}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-14=16 x-14=-16
Whakarūnātia.
x=30 x=-2
Me tāpiri 14 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}