Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-3y=7,3x+3y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-3y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=3y+7
Me tāpiri 3y ki ngā taha e rua o te whārite.
3\left(3y+7\right)+3y=9
Whakakapia te 3y+7 mō te x ki tērā atu whārite, 3x+3y=9.
9y+21+3y=9
Whakareatia 3 ki te 3y+7.
12y+21=9
Tāpiri 9y ki te 3y.
12y=-12
Me tango 21 mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te 12.
x=3\left(-1\right)+7
Whakaurua te -1 mō y ki x=3y+7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-3+7
Whakareatia 3 ki te -1.
x=4
Tāpiri 7 ki te -3.
x=4,y=-1
Kua oti te pūnaha te whakatau.
x-3y=7,3x+3y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-3\\3&3\end{matrix}\right))\left(\begin{matrix}1&-3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\3&3\end{matrix}\right))\left(\begin{matrix}7\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-3\\3&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\3&3\end{matrix}\right))\left(\begin{matrix}7\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\3&3\end{matrix}\right))\left(\begin{matrix}7\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-3\times 3\right)}&-\frac{-3}{3-\left(-3\times 3\right)}\\-\frac{3}{3-\left(-3\times 3\right)}&\frac{1}{3-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}7\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{1}{4}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}7\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 7+\frac{1}{4}\times 9\\-\frac{1}{4}\times 7+\frac{1}{12}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=-1
Tangohia ngā huānga poukapa x me y.
x-3y=7,3x+3y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+3\left(-3\right)y=3\times 7,3x+3y=9
Kia ōrite ai a x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
3x-9y=21,3x+3y=9
Whakarūnātia.
3x-3x-9y-3y=21-9
Me tango 3x+3y=9 mai i 3x-9y=21 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-9y-3y=21-9
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-12y=21-9
Tāpiri -9y ki te -3y.
-12y=12
Tāpiri 21 ki te -9.
y=-1
Whakawehea ngā taha e rua ki te -12.
3x+3\left(-1\right)=9
Whakaurua te -1 mō y ki 3x+3y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-3=9
Whakareatia 3 ki te -1.
3x=12
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te 3.
x=4,y=-1
Kua oti te pūnaha te whakatau.