Whakaoti mō x
x = -\frac{11}{4} = -2\frac{3}{4} = -2.75
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-12+3x=7x-\left(1-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 4-x.
4x-12=7x-\left(1-x\right)
Pahekotia te x me 3x, ka 4x.
4x-12=7x-1-\left(-x\right)
Hei kimi i te tauaro o 1-x, kimihia te tauaro o ia taurangi.
4x-12=7x-1+x
Ko te tauaro o -x ko x.
4x-12=8x-1
Pahekotia te 7x me x, ka 8x.
4x-12-8x=-1
Tangohia te 8x mai i ngā taha e rua.
-4x-12=-1
Pahekotia te 4x me -8x, ka -4x.
-4x=-1+12
Me tāpiri te 12 ki ngā taha e rua.
-4x=11
Tāpirihia te -1 ki te 12, ka 11.
x=\frac{11}{-4}
Whakawehea ngā taha e rua ki te -4.
x=-\frac{11}{4}
Ka taea te hautanga \frac{11}{-4} te tuhi anō ko -\frac{11}{4} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}