Whakaoti mō x
x=-\frac{1}{5}=-0.2
Graph
Tohaina
Kua tāruatia ki te papatopenga
10x-10\left(5x-1\right)-\left(7-5x\right)=10
Whakareatia ngā taha e rua o te whārite ki te 10.
10x-50x+10-\left(7-5x\right)=10
Whakamahia te āhuatanga tohatoha hei whakarea te -10 ki te 5x-1.
-40x+10-\left(7-5x\right)=10
Pahekotia te 10x me -50x, ka -40x.
-40x+10-7-\left(-5x\right)=10
Hei kimi i te tauaro o 7-5x, kimihia te tauaro o ia taurangi.
-40x+10-7+5x=10
Ko te tauaro o -5x ko 5x.
-40x+3+5x=10
Tangohia te 7 i te 10, ka 3.
-35x+3=10
Pahekotia te -40x me 5x, ka -35x.
-35x=10-3
Tangohia te 3 mai i ngā taha e rua.
-35x=7
Tangohia te 3 i te 10, ka 7.
x=\frac{7}{-35}
Whakawehea ngā taha e rua ki te -35.
x=-\frac{1}{5}
Whakahekea te hautanga \frac{7}{-35} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}