x - ( 25 \% ) - ( 4 \% ) ( x ) - ( 10 \% x ) = 45
Whakaoti mō x
x = \frac{4525}{86} = 52\frac{53}{86} \approx 52.61627907
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-\frac{1}{4}-\frac{4}{100}x-\frac{10}{100}x=45
Whakahekea te hautanga \frac{25}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
x-\frac{1}{4}-\frac{1}{25}x-\frac{10}{100}x=45
Whakahekea te hautanga \frac{4}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{24}{25}x-\frac{1}{4}-\frac{10}{100}x=45
Pahekotia te x me -\frac{1}{25}x, ka \frac{24}{25}x.
\frac{24}{25}x-\frac{1}{4}-\frac{1}{10}x=45
Whakahekea te hautanga \frac{10}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
\frac{43}{50}x-\frac{1}{4}=45
Pahekotia te \frac{24}{25}x me -\frac{1}{10}x, ka \frac{43}{50}x.
\frac{43}{50}x=45+\frac{1}{4}
Me tāpiri te \frac{1}{4} ki ngā taha e rua.
\frac{43}{50}x=\frac{180}{4}+\frac{1}{4}
Me tahuri te 45 ki te hautau \frac{180}{4}.
\frac{43}{50}x=\frac{180+1}{4}
Tā te mea he rite te tauraro o \frac{180}{4} me \frac{1}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{43}{50}x=\frac{181}{4}
Tāpirihia te 180 ki te 1, ka 181.
x=\frac{181}{4}\times \frac{50}{43}
Me whakarea ngā taha e rua ki te \frac{50}{43}, te tau utu o \frac{43}{50}.
x=\frac{181\times 50}{4\times 43}
Me whakarea te \frac{181}{4} ki te \frac{50}{43} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{9050}{172}
Mahia ngā whakarea i roto i te hautanga \frac{181\times 50}{4\times 43}.
x=\frac{4525}{86}
Whakahekea te hautanga \frac{9050}{172} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}