Whakaoti mō x
x=9
Graph
Tohaina
Kua tāruatia ki te papatopenga
-\sqrt{3x-2}=4-x
Me tango x mai i ngā taha e rua o te whārite.
\left(-\sqrt{3x-2}\right)^{2}=\left(4-x\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(-1\right)^{2}\left(\sqrt{3x-2}\right)^{2}=\left(4-x\right)^{2}
Whakarohaina te \left(-\sqrt{3x-2}\right)^{2}.
1\left(\sqrt{3x-2}\right)^{2}=\left(4-x\right)^{2}
Tātaihia te -1 mā te pū o 2, kia riro ko 1.
1\left(3x-2\right)=\left(4-x\right)^{2}
Tātaihia te \sqrt{3x-2} mā te pū o 2, kia riro ko 3x-2.
3x-2=\left(4-x\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 1 ki te 3x-2.
3x-2=16-8x+x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(4-x\right)^{2}.
3x-2-16=-8x+x^{2}
Tangohia te 16 mai i ngā taha e rua.
3x-18=-8x+x^{2}
Tangohia te 16 i te -2, ka -18.
3x-18+8x=x^{2}
Me tāpiri te 8x ki ngā taha e rua.
11x-18=x^{2}
Pahekotia te 3x me 8x, ka 11x.
11x-18-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}+11x-18=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=11 ab=-\left(-18\right)=18
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-18. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,18 2,9 3,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 18.
1+18=19 2+9=11 3+6=9
Tātaihia te tapeke mō ia takirua.
a=9 b=2
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(-x^{2}+9x\right)+\left(2x-18\right)
Tuhia anō te -x^{2}+11x-18 hei \left(-x^{2}+9x\right)+\left(2x-18\right).
-x\left(x-9\right)+2\left(x-9\right)
Tauwehea te -x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-9\right)\left(-x+2\right)
Whakatauwehea atu te kīanga pātahi x-9 mā te whakamahi i te āhuatanga tātai tohatoha.
x=9 x=2
Hei kimi otinga whārite, me whakaoti te x-9=0 me te -x+2=0.
9-\sqrt{3\times 9-2}=4
Whakakapia te 9 mō te x i te whārite x-\sqrt{3x-2}=4.
4=4
Whakarūnātia. Ko te uara x=9 kua ngata te whārite.
2-\sqrt{3\times 2-2}=4
Whakakapia te 2 mō te x i te whārite x-\sqrt{3x-2}=4.
0=4
Whakarūnātia. Ko te uara x=2 kāore e ngata ana ki te whārite.
x=9
Ko te whārite -\sqrt{3x-2}=4-x he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}