Whakaoti mō u
u=\frac{6x+5}{11}
Whakaoti mō x
x=\frac{11u-5}{6}
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
x - \frac { u - 1 } { 3 } = u - \frac { 1 - u } { 2 }
Tohaina
Kua tāruatia ki te papatopenga
6x-2\left(u-1\right)=6u-3\left(1-u\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
6x-2u+2=6u-3\left(1-u\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te u-1.
6x-2u+2=6u-3+3u
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 1-u.
6x-2u+2=9u-3
Pahekotia te 6u me 3u, ka 9u.
6x-2u+2-9u=-3
Tangohia te 9u mai i ngā taha e rua.
6x-11u+2=-3
Pahekotia te -2u me -9u, ka -11u.
-11u+2=-3-6x
Tangohia te 6x mai i ngā taha e rua.
-11u=-3-6x-2
Tangohia te 2 mai i ngā taha e rua.
-11u=-5-6x
Tangohia te 2 i te -3, ka -5.
-11u=-6x-5
He hanga arowhānui tō te whārite.
\frac{-11u}{-11}=\frac{-6x-5}{-11}
Whakawehea ngā taha e rua ki te -11.
u=\frac{-6x-5}{-11}
Mā te whakawehe ki te -11 ka wetekia te whakareanga ki te -11.
u=\frac{6x+5}{11}
Whakawehe -5-6x ki te -11.
6x-2\left(u-1\right)=6u-3\left(1-u\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
6x-2u+2=6u-3\left(1-u\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te u-1.
6x-2u+2=6u-3+3u
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 1-u.
6x-2u+2=9u-3
Pahekotia te 6u me 3u, ka 9u.
6x+2=9u-3+2u
Me tāpiri te 2u ki ngā taha e rua.
6x+2=11u-3
Pahekotia te 9u me 2u, ka 11u.
6x=11u-3-2
Tangohia te 2 mai i ngā taha e rua.
6x=11u-5
Tangohia te 2 i te -3, ka -5.
\frac{6x}{6}=\frac{11u-5}{6}
Whakawehea ngā taha e rua ki te 6.
x=\frac{11u-5}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}