Whakaoti mō x
x = \frac{20000}{49} = 408\frac{8}{49} \approx 408.163265306
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
40000x-98x^{2}=0
Whakareatia ngā taha e rua o te whārite ki te 40000.
x\left(40000-98x\right)=0
Tauwehea te x.
x=0 x=\frac{20000}{49}
Hei kimi otinga whārite, me whakaoti te x=0 me te 40000-98x=0.
40000x-98x^{2}=0
Whakareatia ngā taha e rua o te whārite ki te 40000.
-98x^{2}+40000x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-40000±\sqrt{40000^{2}}}{2\left(-98\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -98 mō a, 40000 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40000±40000}{2\left(-98\right)}
Tuhia te pūtakerua o te 40000^{2}.
x=\frac{-40000±40000}{-196}
Whakareatia 2 ki te -98.
x=\frac{0}{-196}
Nā, me whakaoti te whārite x=\frac{-40000±40000}{-196} ina he tāpiri te ±. Tāpiri -40000 ki te 40000.
x=0
Whakawehe 0 ki te -196.
x=-\frac{80000}{-196}
Nā, me whakaoti te whārite x=\frac{-40000±40000}{-196} ina he tango te ±. Tango 40000 mai i -40000.
x=\frac{20000}{49}
Whakahekea te hautanga \frac{-80000}{-196} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=0 x=\frac{20000}{49}
Kua oti te whārite te whakatau.
40000x-98x^{2}=0
Whakareatia ngā taha e rua o te whārite ki te 40000.
-98x^{2}+40000x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-98x^{2}+40000x}{-98}=\frac{0}{-98}
Whakawehea ngā taha e rua ki te -98.
x^{2}+\frac{40000}{-98}x=\frac{0}{-98}
Mā te whakawehe ki te -98 ka wetekia te whakareanga ki te -98.
x^{2}-\frac{20000}{49}x=\frac{0}{-98}
Whakahekea te hautanga \frac{40000}{-98} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{20000}{49}x=0
Whakawehe 0 ki te -98.
x^{2}-\frac{20000}{49}x+\left(-\frac{10000}{49}\right)^{2}=\left(-\frac{10000}{49}\right)^{2}
Whakawehea te -\frac{20000}{49}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{10000}{49}. Nā, tāpiria te pūrua o te -\frac{10000}{49} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{20000}{49}x+\frac{100000000}{2401}=\frac{100000000}{2401}
Pūruatia -\frac{10000}{49} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{10000}{49}\right)^{2}=\frac{100000000}{2401}
Tauwehea x^{2}-\frac{20000}{49}x+\frac{100000000}{2401}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{10000}{49}\right)^{2}}=\sqrt{\frac{100000000}{2401}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{10000}{49}=\frac{10000}{49} x-\frac{10000}{49}=-\frac{10000}{49}
Whakarūnātia.
x=\frac{20000}{49} x=0
Me tāpiri \frac{10000}{49} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}