Whakaoti mō x
x=\frac{14}{15}\approx 0.933333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x-3\times 5\left(1-x\right)-\left(2-3\left(1-2x\right)\right)=0
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,6.
6x-15\left(1-x\right)-\left(2-3\left(1-2x\right)\right)=0
Whakareatia te -3 ki te 5, ka -15.
6x-15+15x-\left(2-3\left(1-2x\right)\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te -15 ki te 1-x.
21x-15-\left(2-3\left(1-2x\right)\right)=0
Pahekotia te 6x me 15x, ka 21x.
21x-15-\left(2-3+6x\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 1-2x.
21x-15-\left(-1+6x\right)=0
Tangohia te 3 i te 2, ka -1.
21x-15-\left(-1\right)-6x=0
Hei kimi i te tauaro o -1+6x, kimihia te tauaro o ia taurangi.
21x-15+1-6x=0
Ko te tauaro o -1 ko 1.
21x-14-6x=0
Tāpirihia te -15 ki te 1, ka -14.
15x-14=0
Pahekotia te 21x me -6x, ka 15x.
15x=14
Me tāpiri te 14 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{14}{15}
Whakawehea ngā taha e rua ki te 15.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}