Whakaoti mō x
x=30
Graph
Tohaina
Kua tāruatia ki te papatopenga
30x-24+5\left(x-2\right)=34x-34+30
Me whakarea ngā taha e rua o te whārite ki te 30, arā, te tauraro pātahi he tino iti rawa te kitea o 5,6,30.
30x-24+5x-10=34x-34+30
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x-2.
35x-24-10=34x-34+30
Pahekotia te 30x me 5x, ka 35x.
35x-34=34x-34+30
Tangohia te 10 i te -24, ka -34.
35x-34=34x-4
Tāpirihia te -34 ki te 30, ka -4.
35x-34-34x=-4
Tangohia te 34x mai i ngā taha e rua.
x-34=-4
Pahekotia te 35x me -34x, ka x.
x=-4+34
Me tāpiri te 34 ki ngā taha e rua.
x=30
Tāpirihia te -4 ki te 34, ka 30.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}