Whakaoti mō x
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{5}x+1-\frac{2}{3}x=\frac{7}{5}-\frac{1}{3}x
Pahekotia te x me -\frac{3}{5}x, ka \frac{2}{5}x.
-\frac{4}{15}x+1=\frac{7}{5}-\frac{1}{3}x
Pahekotia te \frac{2}{5}x me -\frac{2}{3}x, ka -\frac{4}{15}x.
-\frac{4}{15}x+1+\frac{1}{3}x=\frac{7}{5}
Me tāpiri te \frac{1}{3}x ki ngā taha e rua.
\frac{1}{15}x+1=\frac{7}{5}
Pahekotia te -\frac{4}{15}x me \frac{1}{3}x, ka \frac{1}{15}x.
\frac{1}{15}x=\frac{7}{5}-1
Tangohia te 1 mai i ngā taha e rua.
\frac{1}{15}x=\frac{7}{5}-\frac{5}{5}
Me tahuri te 1 ki te hautau \frac{5}{5}.
\frac{1}{15}x=\frac{7-5}{5}
Tā te mea he rite te tauraro o \frac{7}{5} me \frac{5}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{15}x=\frac{2}{5}
Tangohia te 5 i te 7, ka 2.
x=\frac{2}{5}\times 15
Me whakarea ngā taha e rua ki te 15, te tau utu o \frac{1}{15}.
x=\frac{2\times 15}{5}
Tuhia te \frac{2}{5}\times 15 hei hautanga kotahi.
x=\frac{30}{5}
Whakareatia te 2 ki te 15, ka 30.
x=6
Whakawehea te 30 ki te 5, kia riro ko 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}