Whakaoti mō x
x=\frac{5}{6}\approx 0.833333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-\frac{1}{3}\left(x-\frac{1}{3}x-\frac{1}{3}\left(-9\right)\right)=\frac{1}{9}\left(x-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{3} ki te x-9.
x-\frac{1}{3}\left(x-\frac{1}{3}x+\frac{-\left(-9\right)}{3}\right)=\frac{1}{9}\left(x-4\right)
Tuhia te -\frac{1}{3}\left(-9\right) hei hautanga kotahi.
x-\frac{1}{3}\left(x-\frac{1}{3}x+\frac{9}{3}\right)=\frac{1}{9}\left(x-4\right)
Whakareatia te -1 ki te -9, ka 9.
x-\frac{1}{3}\left(x-\frac{1}{3}x+3\right)=\frac{1}{9}\left(x-4\right)
Whakawehea te 9 ki te 3, kia riro ko 3.
x-\frac{1}{3}\left(\frac{2}{3}x+3\right)=\frac{1}{9}\left(x-4\right)
Pahekotia te x me -\frac{1}{3}x, ka \frac{2}{3}x.
x-\frac{1}{3}\times \frac{2}{3}x-\frac{1}{3}\times 3=\frac{1}{9}\left(x-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{3} ki te \frac{2}{3}x+3.
x+\frac{-2}{3\times 3}x-\frac{1}{3}\times 3=\frac{1}{9}\left(x-4\right)
Me whakarea te -\frac{1}{3} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x+\frac{-2}{9}x-\frac{1}{3}\times 3=\frac{1}{9}\left(x-4\right)
Mahia ngā whakarea i roto i te hautanga \frac{-2}{3\times 3}.
x-\frac{2}{9}x-\frac{1}{3}\times 3=\frac{1}{9}\left(x-4\right)
Ka taea te hautanga \frac{-2}{9} te tuhi anō ko -\frac{2}{9} mā te tango i te tohu tōraro.
x-\frac{2}{9}x-1=\frac{1}{9}\left(x-4\right)
Me whakakore te 3 me te 3.
\frac{7}{9}x-1=\frac{1}{9}\left(x-4\right)
Pahekotia te x me -\frac{2}{9}x, ka \frac{7}{9}x.
\frac{7}{9}x-1=\frac{1}{9}x+\frac{1}{9}\left(-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{9} ki te x-4.
\frac{7}{9}x-1=\frac{1}{9}x+\frac{-4}{9}
Whakareatia te \frac{1}{9} ki te -4, ka \frac{-4}{9}.
\frac{7}{9}x-1=\frac{1}{9}x-\frac{4}{9}
Ka taea te hautanga \frac{-4}{9} te tuhi anō ko -\frac{4}{9} mā te tango i te tohu tōraro.
\frac{7}{9}x-1-\frac{1}{9}x=-\frac{4}{9}
Tangohia te \frac{1}{9}x mai i ngā taha e rua.
\frac{2}{3}x-1=-\frac{4}{9}
Pahekotia te \frac{7}{9}x me -\frac{1}{9}x, ka \frac{2}{3}x.
\frac{2}{3}x=-\frac{4}{9}+1
Me tāpiri te 1 ki ngā taha e rua.
\frac{2}{3}x=-\frac{4}{9}+\frac{9}{9}
Me tahuri te 1 ki te hautau \frac{9}{9}.
\frac{2}{3}x=\frac{-4+9}{9}
Tā te mea he rite te tauraro o -\frac{4}{9} me \frac{9}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2}{3}x=\frac{5}{9}
Tāpirihia te -4 ki te 9, ka 5.
x=\frac{5}{9}\times \frac{3}{2}
Me whakarea ngā taha e rua ki te \frac{3}{2}, te tau utu o \frac{2}{3}.
x=\frac{5\times 3}{9\times 2}
Me whakarea te \frac{5}{9} ki te \frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{15}{18}
Mahia ngā whakarea i roto i te hautanga \frac{5\times 3}{9\times 2}.
x=\frac{5}{6}
Whakahekea te hautanga \frac{15}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}