Tīpoka ki ngā ihirangi matua
Whakaoti mō a (complex solution)
Tick mark Image
Whakaoti mō c (complex solution)
Tick mark Image
Whakaoti mō a
Tick mark Image
Whakaoti mō c
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-xa+y\left(y-c\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-a.
x^{2}-xa+y^{2}-yc=0
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te y-c.
-xa+y^{2}-yc=-x^{2}
Tangohia te x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-xa-yc=-x^{2}-y^{2}
Tangohia te y^{2} mai i ngā taha e rua.
-xa=-x^{2}-y^{2}+yc
Me tāpiri te yc ki ngā taha e rua.
\left(-x\right)a=cy-y^{2}-x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-x\right)a}{-x}=\frac{cy-y^{2}-x^{2}}{-x}
Whakawehea ngā taha e rua ki te -x.
a=\frac{cy-y^{2}-x^{2}}{-x}
Mā te whakawehe ki te -x ka wetekia te whakareanga ki te -x.
a=\frac{y^{2}-cy}{x}+x
Whakawehe -x^{2}-y^{2}+cy ki te -x.
x^{2}-xa+y\left(y-c\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-a.
x^{2}-xa+y^{2}-yc=0
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te y-c.
-xa+y^{2}-yc=-x^{2}
Tangohia te x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
y^{2}-yc=-x^{2}+xa
Me tāpiri te xa ki ngā taha e rua.
-yc=-x^{2}+xa-y^{2}
Tangohia te y^{2} mai i ngā taha e rua.
\left(-y\right)c=ax-y^{2}-x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-y\right)c}{-y}=\frac{ax-y^{2}-x^{2}}{-y}
Whakawehea ngā taha e rua ki te -y.
c=\frac{ax-y^{2}-x^{2}}{-y}
Mā te whakawehe ki te -y ka wetekia te whakareanga ki te -y.
c=\frac{x^{2}-ax}{y}+y
Whakawehe -x^{2}-y^{2}+xa ki te -y.
x^{2}-xa+y\left(y-c\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-a.
x^{2}-xa+y^{2}-yc=0
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te y-c.
-xa+y^{2}-yc=-x^{2}
Tangohia te x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-xa-yc=-x^{2}-y^{2}
Tangohia te y^{2} mai i ngā taha e rua.
-xa=-x^{2}-y^{2}+yc
Me tāpiri te yc ki ngā taha e rua.
\left(-x\right)a=cy-y^{2}-x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-x\right)a}{-x}=\frac{cy-y^{2}-x^{2}}{-x}
Whakawehea ngā taha e rua ki te -x.
a=\frac{cy-y^{2}-x^{2}}{-x}
Mā te whakawehe ki te -x ka wetekia te whakareanga ki te -x.
a=\frac{y^{2}-cy}{x}+x
Whakawehe -x^{2}-y^{2}+yc ki te -x.
x^{2}-xa+y\left(y-c\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-a.
x^{2}-xa+y^{2}-yc=0
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te y-c.
-xa+y^{2}-yc=-x^{2}
Tangohia te x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
y^{2}-yc=-x^{2}+xa
Me tāpiri te xa ki ngā taha e rua.
-yc=-x^{2}+xa-y^{2}
Tangohia te y^{2} mai i ngā taha e rua.
\left(-y\right)c=ax-y^{2}-x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-y\right)c}{-y}=\frac{ax-y^{2}-x^{2}}{-y}
Whakawehea ngā taha e rua ki te -y.
c=\frac{ax-y^{2}-x^{2}}{-y}
Mā te whakawehe ki te -y ka wetekia te whakareanga ki te -y.
c=\frac{x^{2}-ax}{y}+y
Whakawehe -x^{2}+xa-y^{2} ki te -y.