Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-5x+2\left(x-1\right)=\left(x+1\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-5.
x^{2}-5x+2x-2=\left(x+1\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-1.
x^{2}-3x-2=\left(x+1\right)^{2}
Pahekotia te -5x me 2x, ka -3x.
x^{2}-3x-2=x^{2}+2x+1
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
x^{2}-3x-2-x^{2}=2x+1
Tangohia te x^{2} mai i ngā taha e rua.
-3x-2=2x+1
Pahekotia te x^{2} me -x^{2}, ka 0.
-3x-2-2x=1
Tangohia te 2x mai i ngā taha e rua.
-5x-2=1
Pahekotia te -3x me -2x, ka -5x.
-5x=1+2
Me tāpiri te 2 ki ngā taha e rua.
-5x=3
Tāpirihia te 1 ki te 2, ka 3.
x=\frac{3}{-5}
Whakawehea ngā taha e rua ki te -5.
x=-\frac{3}{5}
Ka taea te hautanga \frac{3}{-5} te tuhi anō ko -\frac{3}{5} mā te tango i te tohu tōraro.