Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-x-\left(x-\frac{1}{3}\right)\left(x+\frac{1}{3}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-1.
x^{2}-x-\left(x^{2}-\left(\frac{1}{3}\right)^{2}\right)
Whakaarohia te \left(x-\frac{1}{3}\right)\left(x+\frac{1}{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-x-\left(x^{2}-\frac{1}{9}\right)
Tātaihia te \frac{1}{3} mā te pū o 2, kia riro ko \frac{1}{9}.
x^{2}-x-x^{2}-\left(-\frac{1}{9}\right)
Hei kimi i te tauaro o x^{2}-\frac{1}{9}, kimihia te tauaro o ia taurangi.
x^{2}-x-x^{2}+\frac{1}{9}
Ko te tauaro o -\frac{1}{9} ko \frac{1}{9}.
-x+\frac{1}{9}
Pahekotia te x^{2} me -x^{2}, ka 0.
x^{2}-x-\left(x-\frac{1}{3}\right)\left(x+\frac{1}{3}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-1.
x^{2}-x-\left(x^{2}-\left(\frac{1}{3}\right)^{2}\right)
Whakaarohia te \left(x-\frac{1}{3}\right)\left(x+\frac{1}{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-x-\left(x^{2}-\frac{1}{9}\right)
Tātaihia te \frac{1}{3} mā te pū o 2, kia riro ko \frac{1}{9}.
x^{2}-x-x^{2}-\left(-\frac{1}{9}\right)
Hei kimi i te tauaro o x^{2}-\frac{1}{9}, kimihia te tauaro o ia taurangi.
x^{2}-x-x^{2}+\frac{1}{9}
Ko te tauaro o -\frac{1}{9} ko \frac{1}{9}.
-x+\frac{1}{9}
Pahekotia te x^{2} me -x^{2}, ka 0.