Whakaoti mō a (complex solution)
\left\{\begin{matrix}a=\frac{2bx+b^{2}-25}{x}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&\left(b=-5\text{ or }b=5\right)\text{ and }x=0\end{matrix}\right.
Whakaoti mō a
\left\{\begin{matrix}a=\frac{2bx+b^{2}-25}{x}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&x=0\text{ and }|b|=5\end{matrix}\right.
Whakaoti mō b (complex solution)
b=-\left(\sqrt{x^{2}+ax+25}+x\right)
b=\sqrt{x^{2}+ax+25}-x
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+xa+25=\left(x+b\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+a.
x^{2}+xa+25=x^{2}+2xb+b^{2}
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(x+b\right)^{2}.
xa+25=x^{2}+2xb+b^{2}-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
xa+25=2xb+b^{2}
Pahekotia te x^{2} me -x^{2}, ka 0.
xa=2xb+b^{2}-25
Tangohia te 25 mai i ngā taha e rua.
xa=2bx+b^{2}-25
He hanga arowhānui tō te whārite.
\frac{xa}{x}=\frac{2bx+b^{2}-25}{x}
Whakawehea ngā taha e rua ki te x.
a=\frac{2bx+b^{2}-25}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
x^{2}+xa+25=\left(x+b\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+a.
x^{2}+xa+25=x^{2}+2xb+b^{2}
Whakamahia te ture huarua \left(p+q\right)^{2}=p^{2}+2pq+q^{2} hei whakaroha \left(x+b\right)^{2}.
xa+25=x^{2}+2xb+b^{2}-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
xa+25=2xb+b^{2}
Pahekotia te x^{2} me -x^{2}, ka 0.
xa=2xb+b^{2}-25
Tangohia te 25 mai i ngā taha e rua.
xa=2bx+b^{2}-25
He hanga arowhānui tō te whārite.
\frac{xa}{x}=\frac{2bx+b^{2}-25}{x}
Whakawehea ngā taha e rua ki te x.
a=\frac{2bx+b^{2}-25}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}