Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+4x-3=4\left(x+19.5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+4.
x^{2}+4x-3=4x+78
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+19.5.
x^{2}+4x-3-4x=78
Tangohia te 4x mai i ngā taha e rua.
x^{2}-3=78
Pahekotia te 4x me -4x, ka 0.
x^{2}=78+3
Me tāpiri te 3 ki ngā taha e rua.
x^{2}=81
Tāpirihia te 78 ki te 3, ka 81.
x=9 x=-9
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}+4x-3=4\left(x+19.5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+4.
x^{2}+4x-3=4x+78
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+19.5.
x^{2}+4x-3-4x=78
Tangohia te 4x mai i ngā taha e rua.
x^{2}-3=78
Pahekotia te 4x me -4x, ka 0.
x^{2}-3-78=0
Tangohia te 78 mai i ngā taha e rua.
x^{2}-81=0
Tangohia te 78 i te -3, ka -81.
x=\frac{0±\sqrt{0^{2}-4\left(-81\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -81 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-81\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{324}}{2}
Whakareatia -4 ki te -81.
x=\frac{0±18}{2}
Tuhia te pūtakerua o te 324.
x=9
Nā, me whakaoti te whārite x=\frac{0±18}{2} ina he tāpiri te ±. Whakawehe 18 ki te 2.
x=-9
Nā, me whakaoti te whārite x=\frac{0±18}{2} ina he tango te ±. Whakawehe -18 ki te 2.
x=9 x=-9
Kua oti te whārite te whakatau.