Whakaoti mō x
x=3
x=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x^{2}+x\right)\times 8=96
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+1.
8x^{2}+8x=96
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+x ki te 8.
8x^{2}+8x-96=0
Tangohia te 96 mai i ngā taha e rua.
x=\frac{-8±\sqrt{8^{2}-4\times 8\left(-96\right)}}{2\times 8}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 8 mō a, 8 mō b, me -96 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 8\left(-96\right)}}{2\times 8}
Pūrua 8.
x=\frac{-8±\sqrt{64-32\left(-96\right)}}{2\times 8}
Whakareatia -4 ki te 8.
x=\frac{-8±\sqrt{64+3072}}{2\times 8}
Whakareatia -32 ki te -96.
x=\frac{-8±\sqrt{3136}}{2\times 8}
Tāpiri 64 ki te 3072.
x=\frac{-8±56}{2\times 8}
Tuhia te pūtakerua o te 3136.
x=\frac{-8±56}{16}
Whakareatia 2 ki te 8.
x=\frac{48}{16}
Nā, me whakaoti te whārite x=\frac{-8±56}{16} ina he tāpiri te ±. Tāpiri -8 ki te 56.
x=3
Whakawehe 48 ki te 16.
x=-\frac{64}{16}
Nā, me whakaoti te whārite x=\frac{-8±56}{16} ina he tango te ±. Tango 56 mai i -8.
x=-4
Whakawehe -64 ki te 16.
x=3 x=-4
Kua oti te whārite te whakatau.
\left(x^{2}+x\right)\times 8=96
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+1.
8x^{2}+8x=96
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+x ki te 8.
\frac{8x^{2}+8x}{8}=\frac{96}{8}
Whakawehea ngā taha e rua ki te 8.
x^{2}+\frac{8}{8}x=\frac{96}{8}
Mā te whakawehe ki te 8 ka wetekia te whakareanga ki te 8.
x^{2}+x=\frac{96}{8}
Whakawehe 8 ki te 8.
x^{2}+x=12
Whakawehe 96 ki te 8.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=12+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+x+\frac{1}{4}=12+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+x+\frac{1}{4}=\frac{49}{4}
Tāpiri 12 ki te \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{49}{4}
Tauwehea x^{2}+x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{2}=\frac{7}{2} x+\frac{1}{2}=-\frac{7}{2}
Whakarūnātia.
x=3 x=-4
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}