Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x\left(4-5i\right)=-12-7i-y\left(2+6i\right)
Tangohia te y\left(2+6i\right) mai i ngā taha e rua.
x\left(4-5i\right)=-12-7i+\left(-2-6i\right)y
Whakareatia te -1 ki te 2+6i, ka -2-6i.
\left(4-5i\right)x=\left(-2-6i\right)y+\left(-12-7i\right)
He hanga arowhānui tō te whārite.
\frac{\left(4-5i\right)x}{4-5i}=\frac{\left(-2-6i\right)y+\left(-12-7i\right)}{4-5i}
Whakawehea ngā taha e rua ki te 4-5i.
x=\frac{\left(-2-6i\right)y+\left(-12-7i\right)}{4-5i}
Mā te whakawehe ki te 4-5i ka wetekia te whakareanga ki te 4-5i.
x=\left(\frac{22}{41}-\frac{34}{41}i\right)y+\left(-\frac{13}{41}-\frac{88}{41}i\right)
Whakawehe -12-7i+\left(-2-6i\right)y ki te 4-5i.
y\left(2+6i\right)=-12-7i-x\left(4-5i\right)
Tangohia te x\left(4-5i\right) mai i ngā taha e rua.
y\left(2+6i\right)=-12-7i+\left(-4+5i\right)x
Whakareatia te -1 ki te 4-5i, ka -4+5i.
\left(2+6i\right)y=\left(-4+5i\right)x+\left(-12-7i\right)
He hanga arowhānui tō te whārite.
\frac{\left(2+6i\right)y}{2+6i}=\frac{\left(-4+5i\right)x+\left(-12-7i\right)}{2+6i}
Whakawehea ngā taha e rua ki te 2+6i.
y=\frac{\left(-4+5i\right)x+\left(-12-7i\right)}{2+6i}
Mā te whakawehe ki te 2+6i ka wetekia te whakareanga ki te 2+6i.
y=\left(\frac{11}{20}+\frac{17}{20}i\right)x+\left(-\frac{33}{20}+\frac{29}{20}i\right)
Whakawehe -12-7i+\left(-4+5i\right)x ki te 2+6i.