Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{2}{10}x-\frac{7}{3}a\right)-\frac{10}{9}\left(-\frac{9}{20}x^{2}+\frac{3}{2}a^{2}\right)+\frac{5}{42}ax
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te \frac{1}{4}a-\frac{3}{2}x.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{1}{5}x-\frac{7}{3}a\right)-\frac{10}{9}\left(-\frac{9}{20}x^{2}+\frac{3}{2}a^{2}\right)+\frac{5}{42}ax
Whakahekea te hautanga \frac{2}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{1}{5}x-\frac{7}{3}a\right)+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{10}{9} ki te -\frac{9}{20}x^{2}+\frac{3}{2}a^{2}.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{1}{7}ax+\frac{5}{3}a^{2}+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{5}{7}a ki te \frac{1}{5}x-\frac{7}{3}a.
\frac{3}{28}xa-\frac{3}{2}x^{2}+\frac{5}{3}a^{2}+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Pahekotia te \frac{1}{4}xa me -\frac{1}{7}ax, ka \frac{3}{28}xa.
\frac{3}{28}xa-x^{2}+\frac{5}{3}a^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Pahekotia te -\frac{3}{2}x^{2} me \frac{1}{2}x^{2}, ka -x^{2}.
\frac{3}{28}xa-x^{2}+\frac{5}{42}ax
Pahekotia te \frac{5}{3}a^{2} me -\frac{5}{3}a^{2}, ka 0.
\frac{19}{84}xa-x^{2}
Pahekotia te \frac{3}{28}xa me \frac{5}{42}ax, ka \frac{19}{84}xa.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{2}{10}x-\frac{7}{3}a\right)-\frac{10}{9}\left(-\frac{9}{20}x^{2}+\frac{3}{2}a^{2}\right)+\frac{5}{42}ax
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te \frac{1}{4}a-\frac{3}{2}x.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{1}{5}x-\frac{7}{3}a\right)-\frac{10}{9}\left(-\frac{9}{20}x^{2}+\frac{3}{2}a^{2}\right)+\frac{5}{42}ax
Whakahekea te hautanga \frac{2}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{5}{7}a\left(\frac{1}{5}x-\frac{7}{3}a\right)+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{10}{9} ki te -\frac{9}{20}x^{2}+\frac{3}{2}a^{2}.
\frac{1}{4}xa-\frac{3}{2}x^{2}-\frac{1}{7}ax+\frac{5}{3}a^{2}+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{5}{7}a ki te \frac{1}{5}x-\frac{7}{3}a.
\frac{3}{28}xa-\frac{3}{2}x^{2}+\frac{5}{3}a^{2}+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Pahekotia te \frac{1}{4}xa me -\frac{1}{7}ax, ka \frac{3}{28}xa.
\frac{3}{28}xa-x^{2}+\frac{5}{3}a^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Pahekotia te -\frac{3}{2}x^{2} me \frac{1}{2}x^{2}, ka -x^{2}.
\frac{3}{28}xa-x^{2}+\frac{5}{42}ax
Pahekotia te \frac{5}{3}a^{2} me -\frac{5}{3}a^{2}, ka 0.
\frac{19}{84}xa-x^{2}
Pahekotia te \frac{3}{28}xa me \frac{5}{42}ax, ka \frac{19}{84}xa.