Aromātai
\frac{25\sqrt{2}x}{6}
Kimi Pārōnaki e ai ki x
\frac{25 \sqrt{2}}{6} = 5.892556509887896
Graph
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
x \times 25 \div { 6 }^{ 2 } \sqrt{ 2 \times { 6 }^{ 2 } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{x\times 25}{36}\sqrt{2\times 6^{2}}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\frac{x\times 25}{36}\sqrt{2\times 36}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\frac{x\times 25}{36}\sqrt{72}
Whakareatia te 2 ki te 36, ka 72.
\frac{x\times 25}{36}\times 6\sqrt{2}
Tauwehea te 72=6^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 2} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{2}. Tuhia te pūtakerua o te 6^{2}.
\frac{x\times 25}{6}\sqrt{2}
Whakakorea atu te tauwehe pūnoa nui rawa 36 i roto i te 6 me te 36.
\frac{x\times 25\sqrt{2}}{6}
Tuhia te \frac{x\times 25}{6}\sqrt{2} hei hautanga kotahi.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}