Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x\left(x+2\right)+0.6=x^{2}+\frac{1}{5}
Whakareatia te x ki te x, ka x^{2}.
x^{2}+2x+0.6=x^{2}+\frac{1}{5}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+2.
x^{2}+2x+0.6-x^{2}=\frac{1}{5}
Tangohia te x^{2} mai i ngā taha e rua.
2x+0.6=\frac{1}{5}
Pahekotia te x^{2} me -x^{2}, ka 0.
2x=\frac{1}{5}-0.6
Tangohia te 0.6 mai i ngā taha e rua.
2x=\frac{1}{5}-\frac{3}{5}
Me tahuri ki tau ā-ira 0.6 ki te hautau \frac{6}{10}. Whakahekea te hautanga \frac{6}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
2x=\frac{1-3}{5}
Tā te mea he rite te tauraro o \frac{1}{5} me \frac{3}{5}, me tango rāua mā te tango i ō raua taurunga.
2x=-\frac{2}{5}
Tangohia te 3 i te 1, ka -2.
x=\frac{-\frac{2}{5}}{2}
Whakawehea ngā taha e rua ki te 2.
x=\frac{-2}{5\times 2}
Tuhia te \frac{-\frac{2}{5}}{2} hei hautanga kotahi.
x=\frac{-2}{10}
Whakareatia te 5 ki te 2, ka 10.
x=-\frac{1}{5}
Whakahekea te hautanga \frac{-2}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.