Tīpoka ki ngā ihirangi matua
Aromātai (complex solution)
Tick mark Image
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}\sqrt{-1}\sqrt{-1}
Whakareatia te x ki te x, ka x^{2}.
x^{2}\left(\sqrt{-1}\right)^{2}
Whakareatia te \sqrt{-1} ki te \sqrt{-1}, ka \left(\sqrt{-1}\right)^{2}.
x^{2}\left(-1\right)
Ko te pūrua o \sqrt{-1} ko -1.
x^{2}\sqrt{-1}\sqrt{-1}
Whakareatia te x ki te x, ka x^{2}.
x^{2}\left(\sqrt{-1}\right)^{2}
Whakareatia te \sqrt{-1} ki te \sqrt{-1}, ka \left(\sqrt{-1}\right)^{2}.
x^{2}\left(-1\right)
Tātaihia te \sqrt{-1} mā te pū o 2, kia riro ko -1.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}\sqrt{-1}\sqrt{-1})
Whakareatia te x ki te x, ka x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}\left(\sqrt{-1}\right)^{2})
Whakareatia te \sqrt{-1} ki te \sqrt{-1}, ka \left(\sqrt{-1}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}\left(-1\right))
Tātaihia te \sqrt{-1} mā te pū o 2, kia riro ko -1.
2\left(-1\right)x^{2-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-2x^{2-1}
Whakareatia 2 ki te -1.
-2x^{1}
Tango 1 mai i 2.
-2x
Mō tētahi kupu t, t^{1}=t.