Aromātai (complex solution)
-x^{2}
Aromātai
\text{Indeterminate}
Kimi Pārōnaki e ai ki x
\text{Indeterminate}
Tohaina
Kua tāruatia ki te papatopenga
x^{2}\sqrt{-1}\sqrt{-1}
Whakareatia te x ki te x, ka x^{2}.
x^{2}\left(\sqrt{-1}\right)^{2}
Whakareatia te \sqrt{-1} ki te \sqrt{-1}, ka \left(\sqrt{-1}\right)^{2}.
x^{2}\left(-1\right)
Ko te pūrua o \sqrt{-1} ko -1.
x^{2}\sqrt{-1}\sqrt{-1}
Whakareatia te x ki te x, ka x^{2}.
x^{2}\left(\sqrt{-1}\right)^{2}
Whakareatia te \sqrt{-1} ki te \sqrt{-1}, ka \left(\sqrt{-1}\right)^{2}.
x^{2}\left(-1\right)
Tātaihia te \sqrt{-1} mā te pū o 2, kia riro ko -1.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}\sqrt{-1}\sqrt{-1})
Whakareatia te x ki te x, ka x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}\left(\sqrt{-1}\right)^{2})
Whakareatia te \sqrt{-1} ki te \sqrt{-1}, ka \left(\sqrt{-1}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}\left(-1\right))
Tātaihia te \sqrt{-1} mā te pū o 2, kia riro ko -1.
2\left(-1\right)x^{2-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-2x^{2-1}
Whakareatia 2 ki te -1.
-2x^{1}
Tango 1 mai i 2.
-2x
Mō tētahi kupu t, t^{1}=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}