Aromātai
\frac{24x^{3}}{125}
Kimi Pārōnaki e ai ki x
\frac{72x^{2}}{125}
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}\times \frac{4}{5}\times \frac{2}{5}x\times \frac{3}{5}
Whakareatia te x ki te x, ka x^{2}.
x^{3}\times \frac{4}{5}\times \frac{2}{5}\times \frac{3}{5}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
x^{3}\times \frac{4\times 2}{5\times 5}\times \frac{3}{5}
Me whakarea te \frac{4}{5} ki te \frac{2}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x^{3}\times \frac{8}{25}\times \frac{3}{5}
Mahia ngā whakarea i roto i te hautanga \frac{4\times 2}{5\times 5}.
x^{3}\times \frac{8\times 3}{25\times 5}
Me whakarea te \frac{8}{25} ki te \frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x^{3}\times \frac{24}{125}
Mahia ngā whakarea i roto i te hautanga \frac{8\times 3}{25\times 5}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}\times \frac{4}{5}\times \frac{2}{5}x\times \frac{3}{5})
Whakareatia te x ki te x, ka x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{4}{5}\times \frac{2}{5}\times \frac{3}{5})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{4\times 2}{5\times 5}\times \frac{3}{5})
Me whakarea te \frac{4}{5} ki te \frac{2}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{8}{25}\times \frac{3}{5})
Mahia ngā whakarea i roto i te hautanga \frac{4\times 2}{5\times 5}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{8\times 3}{25\times 5})
Me whakarea te \frac{8}{25} ki te \frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{24}{125})
Mahia ngā whakarea i roto i te hautanga \frac{8\times 3}{25\times 5}.
3\times \frac{24}{125}x^{3-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{72}{125}x^{3-1}
Whakareatia 3 ki te \frac{24}{125}.
\frac{72}{125}x^{2}
Tango 1 mai i 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}