Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}\times \frac{4}{5}\times \frac{-2}{5}x\times \frac{3}{5}
Whakareatia te x ki te x, ka x^{2}.
x^{3}\times \frac{4}{5}\times \frac{-2}{5}\times \frac{3}{5}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
x^{3}\times \frac{4}{5}\left(-\frac{2}{5}\right)\times \frac{3}{5}
Ka taea te hautanga \frac{-2}{5} te tuhi anō ko -\frac{2}{5} mā te tango i te tohu tōraro.
x^{3}\times \frac{4\left(-2\right)}{5\times 5}\times \frac{3}{5}
Me whakarea te \frac{4}{5} ki te -\frac{2}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x^{3}\times \frac{-8}{25}\times \frac{3}{5}
Mahia ngā whakarea i roto i te hautanga \frac{4\left(-2\right)}{5\times 5}.
x^{3}\left(-\frac{8}{25}\right)\times \frac{3}{5}
Ka taea te hautanga \frac{-8}{25} te tuhi anō ko -\frac{8}{25} mā te tango i te tohu tōraro.
x^{3}\times \frac{-8\times 3}{25\times 5}
Me whakarea te -\frac{8}{25} ki te \frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x^{3}\times \frac{-24}{125}
Mahia ngā whakarea i roto i te hautanga \frac{-8\times 3}{25\times 5}.
x^{3}\left(-\frac{24}{125}\right)
Ka taea te hautanga \frac{-24}{125} te tuhi anō ko -\frac{24}{125} mā te tango i te tohu tōraro.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}\times \frac{4}{5}\times \frac{-2}{5}x\times \frac{3}{5})
Whakareatia te x ki te x, ka x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{4}{5}\times \frac{-2}{5}\times \frac{3}{5})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{4}{5}\left(-\frac{2}{5}\right)\times \frac{3}{5})
Ka taea te hautanga \frac{-2}{5} te tuhi anō ko -\frac{2}{5} mā te tango i te tohu tōraro.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{4\left(-2\right)}{5\times 5}\times \frac{3}{5})
Me whakarea te \frac{4}{5} ki te -\frac{2}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{-8}{25}\times \frac{3}{5})
Mahia ngā whakarea i roto i te hautanga \frac{4\left(-2\right)}{5\times 5}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\left(-\frac{8}{25}\right)\times \frac{3}{5})
Ka taea te hautanga \frac{-8}{25} te tuhi anō ko -\frac{8}{25} mā te tango i te tohu tōraro.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{-8\times 3}{25\times 5})
Me whakarea te -\frac{8}{25} ki te \frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\times \frac{-24}{125})
Mahia ngā whakarea i roto i te hautanga \frac{-8\times 3}{25\times 5}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\left(-\frac{24}{125}\right))
Ka taea te hautanga \frac{-24}{125} te tuhi anō ko -\frac{24}{125} mā te tango i te tohu tōraro.
3\left(-\frac{24}{125}\right)x^{3-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-\frac{72}{125}x^{3-1}
Whakareatia 3 ki te -\frac{24}{125}.
-\frac{72}{125}x^{2}
Tango 1 mai i 3.