Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+2xx=0\times 0\times 6x+30
Whakareatia ngā taha e rua o te whārite ki te 10.
x+2x^{2}=0\times 0\times 6x+30
Whakareatia te x ki te x, ka x^{2}.
x+2x^{2}=0\times 6x+30
Whakareatia te 0 ki te 0, ka 0.
x+2x^{2}=0x+30
Whakareatia te 0 ki te 6, ka 0.
x+2x^{2}=0+30
Ko te tau i whakarea ki te kore ka hua ko te kore.
x+2x^{2}=30
Tāpirihia te 0 ki te 30, ka 30.
x+2x^{2}-30=0
Tangohia te 30 mai i ngā taha e rua.
2x^{2}+x-30=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-30\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 1 mō b, me -30 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 2\left(-30\right)}}{2\times 2}
Pūrua 1.
x=\frac{-1±\sqrt{1-8\left(-30\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-1±\sqrt{1+240}}{2\times 2}
Whakareatia -8 ki te -30.
x=\frac{-1±\sqrt{241}}{2\times 2}
Tāpiri 1 ki te 240.
x=\frac{-1±\sqrt{241}}{4}
Whakareatia 2 ki te 2.
x=\frac{\sqrt{241}-1}{4}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{241}}{4} ina he tāpiri te ±. Tāpiri -1 ki te \sqrt{241}.
x=\frac{-\sqrt{241}-1}{4}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{241}}{4} ina he tango te ±. Tango \sqrt{241} mai i -1.
x=\frac{\sqrt{241}-1}{4} x=\frac{-\sqrt{241}-1}{4}
Kua oti te whārite te whakatau.
x+2xx=0\times 0\times 6x+30
Whakareatia ngā taha e rua o te whārite ki te 10.
x+2x^{2}=0\times 0\times 6x+30
Whakareatia te x ki te x, ka x^{2}.
x+2x^{2}=0\times 6x+30
Whakareatia te 0 ki te 0, ka 0.
x+2x^{2}=0x+30
Whakareatia te 0 ki te 6, ka 0.
x+2x^{2}=0+30
Ko te tau i whakarea ki te kore ka hua ko te kore.
x+2x^{2}=30
Tāpirihia te 0 ki te 30, ka 30.
2x^{2}+x=30
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{2x^{2}+x}{2}=\frac{30}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{1}{2}x=\frac{30}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+\frac{1}{2}x=15
Whakawehe 30 ki te 2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=15+\left(\frac{1}{4}\right)^{2}
Whakawehea te \frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{4}. Nā, tāpiria te pūrua o te \frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{2}x+\frac{1}{16}=15+\frac{1}{16}
Pūruatia \frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{241}{16}
Tāpiri 15 ki te \frac{1}{16}.
\left(x+\frac{1}{4}\right)^{2}=\frac{241}{16}
Tauwehea x^{2}+\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{241}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{4}=\frac{\sqrt{241}}{4} x+\frac{1}{4}=-\frac{\sqrt{241}}{4}
Whakarūnātia.
x=\frac{\sqrt{241}-1}{4} x=\frac{-\sqrt{241}-1}{4}
Me tango \frac{1}{4} mai i ngā taha e rua o te whārite.