Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+2xx=0.6x+30
Whakareatia ngā taha e rua o te whārite ki te 10.
x+2x^{2}=0.6x+30
Whakareatia te x ki te x, ka x^{2}.
x+2x^{2}-0.6x=30
Tangohia te 0.6x mai i ngā taha e rua.
0.4x+2x^{2}=30
Pahekotia te x me -0.6x, ka 0.4x.
0.4x+2x^{2}-30=0
Tangohia te 30 mai i ngā taha e rua.
2x^{2}+0.4x-30=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-0.4±\sqrt{0.4^{2}-4\times 2\left(-30\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 0.4 mō b, me -30 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0.4±\sqrt{0.16-4\times 2\left(-30\right)}}{2\times 2}
Pūruatia 0.4 mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-0.4±\sqrt{0.16-8\left(-30\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-0.4±\sqrt{0.16+240}}{2\times 2}
Whakareatia -8 ki te -30.
x=\frac{-0.4±\sqrt{240.16}}{2\times 2}
Tāpiri 0.16 ki te 240.
x=\frac{-0.4±\frac{2\sqrt{1501}}{5}}{2\times 2}
Tuhia te pūtakerua o te 240.16.
x=\frac{-0.4±\frac{2\sqrt{1501}}{5}}{4}
Whakareatia 2 ki te 2.
x=\frac{2\sqrt{1501}-2}{4\times 5}
Nā, me whakaoti te whārite x=\frac{-0.4±\frac{2\sqrt{1501}}{5}}{4} ina he tāpiri te ±. Tāpiri -0.4 ki te \frac{2\sqrt{1501}}{5}.
x=\frac{\sqrt{1501}-1}{10}
Whakawehe \frac{-2+2\sqrt{1501}}{5} ki te 4.
x=\frac{-2\sqrt{1501}-2}{4\times 5}
Nā, me whakaoti te whārite x=\frac{-0.4±\frac{2\sqrt{1501}}{5}}{4} ina he tango te ±. Tango \frac{2\sqrt{1501}}{5} mai i -0.4.
x=\frac{-\sqrt{1501}-1}{10}
Whakawehe \frac{-2-2\sqrt{1501}}{5} ki te 4.
x=\frac{\sqrt{1501}-1}{10} x=\frac{-\sqrt{1501}-1}{10}
Kua oti te whārite te whakatau.
x+2xx=0.6x+30
Whakareatia ngā taha e rua o te whārite ki te 10.
x+2x^{2}=0.6x+30
Whakareatia te x ki te x, ka x^{2}.
x+2x^{2}-0.6x=30
Tangohia te 0.6x mai i ngā taha e rua.
0.4x+2x^{2}=30
Pahekotia te x me -0.6x, ka 0.4x.
2x^{2}+0.4x=30
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{2x^{2}+0.4x}{2}=\frac{30}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{0.4}{2}x=\frac{30}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+0.2x=\frac{30}{2}
Whakawehe 0.4 ki te 2.
x^{2}+0.2x=15
Whakawehe 30 ki te 2.
x^{2}+0.2x+0.1^{2}=15+0.1^{2}
Whakawehea te 0.2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 0.1. Nā, tāpiria te pūrua o te 0.1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+0.2x+0.01=15+0.01
Pūruatia 0.1 mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+0.2x+0.01=15.01
Tāpiri 15 ki te 0.01.
\left(x+0.1\right)^{2}=15.01
Tauwehea x^{2}+0.2x+0.01. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+0.1\right)^{2}}=\sqrt{15.01}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+0.1=\frac{\sqrt{1501}}{10} x+0.1=-\frac{\sqrt{1501}}{10}
Whakarūnātia.
x=\frac{\sqrt{1501}-1}{10} x=\frac{-\sqrt{1501}-1}{10}
Me tango 0.1 mai i ngā taha e rua o te whārite.