Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-x=-2\left(x^{2}+x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-1.
x^{2}-x=-2x^{2}-2x-2
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x^{2}+x+1.
x^{2}-x+2x^{2}=-2x-2
Me tāpiri te 2x^{2} ki ngā taha e rua.
3x^{2}-x=-2x-2
Pahekotia te x^{2} me 2x^{2}, ka 3x^{2}.
3x^{2}-x+2x=-2
Me tāpiri te 2x ki ngā taha e rua.
3x^{2}+x=-2
Pahekotia te -x me 2x, ka x.
3x^{2}+x+2=0
Me tāpiri te 2 ki ngā taha e rua.
x=\frac{-1±\sqrt{1^{2}-4\times 3\times 2}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 1 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 3\times 2}}{2\times 3}
Pūrua 1.
x=\frac{-1±\sqrt{1-12\times 2}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-1±\sqrt{1-24}}{2\times 3}
Whakareatia -12 ki te 2.
x=\frac{-1±\sqrt{-23}}{2\times 3}
Tāpiri 1 ki te -24.
x=\frac{-1±\sqrt{23}i}{2\times 3}
Tuhia te pūtakerua o te -23.
x=\frac{-1±\sqrt{23}i}{6}
Whakareatia 2 ki te 3.
x=\frac{-1+\sqrt{23}i}{6}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{23}i}{6} ina he tāpiri te ±. Tāpiri -1 ki te i\sqrt{23}.
x=\frac{-\sqrt{23}i-1}{6}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{23}i}{6} ina he tango te ±. Tango i\sqrt{23} mai i -1.
x=\frac{-1+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i-1}{6}
Kua oti te whārite te whakatau.
x^{2}-x=-2\left(x^{2}+x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-1.
x^{2}-x=-2x^{2}-2x-2
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x^{2}+x+1.
x^{2}-x+2x^{2}=-2x-2
Me tāpiri te 2x^{2} ki ngā taha e rua.
3x^{2}-x=-2x-2
Pahekotia te x^{2} me 2x^{2}, ka 3x^{2}.
3x^{2}-x+2x=-2
Me tāpiri te 2x ki ngā taha e rua.
3x^{2}+x=-2
Pahekotia te -x me 2x, ka x.
\frac{3x^{2}+x}{3}=-\frac{2}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{1}{3}x=-\frac{2}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=-\frac{2}{3}+\left(\frac{1}{6}\right)^{2}
Whakawehea te \frac{1}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{6}. Nā, tāpiria te pūrua o te \frac{1}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{2}{3}+\frac{1}{36}
Pūruatia \frac{1}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{23}{36}
Tāpiri -\frac{2}{3} ki te \frac{1}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{6}\right)^{2}=-\frac{23}{36}
Tauwehea x^{2}+\frac{1}{3}x+\frac{1}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{-\frac{23}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{6}=\frac{\sqrt{23}i}{6} x+\frac{1}{6}=-\frac{\sqrt{23}i}{6}
Whakarūnātia.
x=\frac{-1+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i-1}{6}
Me tango \frac{1}{6} mai i ngā taha e rua o te whārite.