Whakaoti mō x
x=\sqrt{374}+23\approx 42.339079606
x=23-\sqrt{374}\approx 3.660920394
Graph
Tohaina
Kua tāruatia ki te papatopenga
-20x^{2}+920x=3100
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te -20x+920.
-20x^{2}+920x-3100=0
Tangohia te 3100 mai i ngā taha e rua.
x=\frac{-920±\sqrt{920^{2}-4\left(-20\right)\left(-3100\right)}}{2\left(-20\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -20 mō a, 920 mō b, me -3100 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-920±\sqrt{846400-4\left(-20\right)\left(-3100\right)}}{2\left(-20\right)}
Pūrua 920.
x=\frac{-920±\sqrt{846400+80\left(-3100\right)}}{2\left(-20\right)}
Whakareatia -4 ki te -20.
x=\frac{-920±\sqrt{846400-248000}}{2\left(-20\right)}
Whakareatia 80 ki te -3100.
x=\frac{-920±\sqrt{598400}}{2\left(-20\right)}
Tāpiri 846400 ki te -248000.
x=\frac{-920±40\sqrt{374}}{2\left(-20\right)}
Tuhia te pūtakerua o te 598400.
x=\frac{-920±40\sqrt{374}}{-40}
Whakareatia 2 ki te -20.
x=\frac{40\sqrt{374}-920}{-40}
Nā, me whakaoti te whārite x=\frac{-920±40\sqrt{374}}{-40} ina he tāpiri te ±. Tāpiri -920 ki te 40\sqrt{374}.
x=23-\sqrt{374}
Whakawehe -920+40\sqrt{374} ki te -40.
x=\frac{-40\sqrt{374}-920}{-40}
Nā, me whakaoti te whārite x=\frac{-920±40\sqrt{374}}{-40} ina he tango te ±. Tango 40\sqrt{374} mai i -920.
x=\sqrt{374}+23
Whakawehe -920-40\sqrt{374} ki te -40.
x=23-\sqrt{374} x=\sqrt{374}+23
Kua oti te whārite te whakatau.
-20x^{2}+920x=3100
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te -20x+920.
\frac{-20x^{2}+920x}{-20}=\frac{3100}{-20}
Whakawehea ngā taha e rua ki te -20.
x^{2}+\frac{920}{-20}x=\frac{3100}{-20}
Mā te whakawehe ki te -20 ka wetekia te whakareanga ki te -20.
x^{2}-46x=\frac{3100}{-20}
Whakawehe 920 ki te -20.
x^{2}-46x=-155
Whakawehe 3100 ki te -20.
x^{2}-46x+\left(-23\right)^{2}=-155+\left(-23\right)^{2}
Whakawehea te -46, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -23. Nā, tāpiria te pūrua o te -23 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-46x+529=-155+529
Pūrua -23.
x^{2}-46x+529=374
Tāpiri -155 ki te 529.
\left(x-23\right)^{2}=374
Tauwehea x^{2}-46x+529. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-23\right)^{2}}=\sqrt{374}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-23=\sqrt{374} x-23=-\sqrt{374}
Whakarūnātia.
x=\sqrt{374}+23 x=23-\sqrt{374}
Me tāpiri 23 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}