Tīpoka ki ngā ihirangi matua
Whakaoti mō d (complex solution)
Tick mark Image
Whakaoti mō k (complex solution)
Tick mark Image
Whakaoti mō d
Tick mark Image
Whakaoti mō k
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-dx-k=-x^{y}
Tangohia te x^{y} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-dx=-x^{y}+k
Me tāpiri te k ki ngā taha e rua.
\left(-x\right)d=k-x^{y}
He hanga arowhānui tō te whārite.
\frac{\left(-x\right)d}{-x}=\frac{k-x^{y}}{-x}
Whakawehea ngā taha e rua ki te -x.
d=\frac{k-x^{y}}{-x}
Mā te whakawehe ki te -x ka wetekia te whakareanga ki te -x.
d=-\frac{k-x^{y}}{x}
Whakawehe k-x^{y} ki te -x.
-dx-k=-x^{y}
Tangohia te x^{y} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-k=-x^{y}+dx
Me tāpiri te dx ki ngā taha e rua.
-k=dx-x^{y}
He hanga arowhānui tō te whārite.
\frac{-k}{-1}=\frac{dx-x^{y}}{-1}
Whakawehea ngā taha e rua ki te -1.
k=\frac{dx-x^{y}}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
k=x^{y}-dx
Whakawehe -x^{y}+dx ki te -1.
-dx-k=-x^{y}
Tangohia te x^{y} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-dx=-x^{y}+k
Me tāpiri te k ki ngā taha e rua.
\left(-x\right)d=k-x^{y}
He hanga arowhānui tō te whārite.
\frac{\left(-x\right)d}{-x}=\frac{k-x^{y}}{-x}
Whakawehea ngā taha e rua ki te -x.
d=\frac{k-x^{y}}{-x}
Mā te whakawehe ki te -x ka wetekia te whakareanga ki te -x.
d=-\frac{k-x^{y}}{x}
Whakawehe k-x^{y} ki te -x.
-dx-k=-x^{y}
Tangohia te x^{y} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-k=-x^{y}+dx
Me tāpiri te dx ki ngā taha e rua.
-k=dx-x^{y}
He hanga arowhānui tō te whārite.
\frac{-k}{-1}=\frac{dx-x^{y}}{-1}
Whakawehea ngā taha e rua ki te -1.
k=\frac{dx-x^{y}}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
k=x^{y}-dx
Whakawehe -x^{y}+dx ki te -1.