Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x^{3}-8b^{6}\right)\left(x^{3}+8b^{6}\right)
Tuhia anō te x^{6}-64b^{12} hei \left(x^{3}\right)^{2}-\left(8b^{6}\right)^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(x-2b^{2}\right)\left(x^{2}+2xb^{2}+4b^{4}\right)
Whakaarohia te x^{3}-8b^{6}. Tuhia anō te x^{3}-8b^{6} hei x^{3}-\left(2b^{2}\right)^{3}. Ka taea te rerekētanga o ngā pūtoru te whakatauwehe mā te whakamahi i te ture: p^{3}-q^{3}=\left(p-q\right)\left(p^{2}+pq+q^{2}\right).
\left(x+2b^{2}\right)\left(x^{2}-2xb^{2}+4b^{4}\right)
Whakaarohia te x^{3}+8b^{6}. Tuhia anō te x^{3}+8b^{6} hei x^{3}+\left(2b^{2}\right)^{3}. Ka taea te tapeke pūtoru te whakatauwehe mā te whakamahi i te ture: p^{3}+q^{3}=\left(p+q\right)\left(p^{2}-pq+q^{2}\right).
\left(x-2b^{2}\right)\left(x+2b^{2}\right)\left(x^{2}-2xb^{2}+4b^{4}\right)\left(x^{2}+2xb^{2}+4b^{4}\right)
Me tuhi anō te kīanga whakatauwehe katoa.