Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t^{2}-19t-216=0
Whakakapia te t mō te x^{3}.
t=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 1\left(-216\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -19 mō te b, me te -216 mō te c i te ture pūrua.
t=\frac{19±35}{2}
Mahia ngā tātaitai.
t=27 t=-8
Whakaotia te whārite t=\frac{19±35}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=3 x=-2
I te mea ko x=t^{3}, ka riro ngā otinga mā te arotake i te x=\sqrt[3]{t} mō ia t.