Whakaoti mō x (complex solution)
x\in \frac{-\sqrt{3}i+1}{2},-1,\frac{1+\sqrt{3}i}{2},\sqrt[3]{2}e^{\frac{5\pi i}{3}},\sqrt[3]{2}e^{\frac{\pi i}{3}},-\sqrt[3]{2}
Whakaoti mō x
x=-\sqrt[3]{2}\approx -1.25992105
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
t^{2}+3t+2=0
Whakakapia te t mō te x^{3}.
t=\frac{-3±\sqrt{3^{2}-4\times 1\times 2}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 3 mō te b, me te 2 mō te c i te ture pūrua.
t=\frac{-3±1}{2}
Mahia ngā tātaitai.
t=-1 t=-2
Whakaotia te whārite t=\frac{-3±1}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=-1 x=\frac{1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+1}{2} x=-\sqrt[3]{2}ie^{\frac{\pi i}{6}} x=-\sqrt[3]{2} x=\sqrt[3]{2}e^{\frac{\pi i}{3}}
Mai i te x=t^{3}, ka taea ngā otinga mā te whakaoti te whārite mō ia t.
t^{2}+3t+2=0
Whakakapia te t mō te x^{3}.
t=\frac{-3±\sqrt{3^{2}-4\times 1\times 2}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 3 mō te b, me te 2 mō te c i te ture pūrua.
t=\frac{-3±1}{2}
Mahia ngā tātaitai.
t=-1 t=-2
Whakaotia te whārite t=\frac{-3±1}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=-1 x=-\sqrt[3]{2}
I te mea ko x=t^{3}, ka riro ngā otinga mā te arotake i te x=\sqrt[3]{t} mō ia t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}