Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t^{2}+3t+2=0
Whakakapia te t mō te x^{3}.
t=\frac{-3±\sqrt{3^{2}-4\times 1\times 2}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 3 mō te b, me te 2 mō te c i te ture pūrua.
t=\frac{-3±1}{2}
Mahia ngā tātaitai.
t=-1 t=-2
Whakaotia te whārite t=\frac{-3±1}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=-1 x=\frac{1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+1}{2} x=-\sqrt[3]{2}ie^{\frac{\pi i}{6}} x=-\sqrt[3]{2} x=\sqrt[3]{2}e^{\frac{\pi i}{3}}
Mai i te x=t^{3}, ka taea ngā otinga mā te whakaoti te whārite mō ia t.
t^{2}+3t+2=0
Whakakapia te t mō te x^{3}.
t=\frac{-3±\sqrt{3^{2}-4\times 1\times 2}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 3 mō te b, me te 2 mō te c i te ture pūrua.
t=\frac{-3±1}{2}
Mahia ngā tātaitai.
t=-1 t=-2
Whakaotia te whārite t=\frac{-3±1}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=-1 x=-\sqrt[3]{2}
I te mea ko x=t^{3}, ka riro ngā otinga mā te arotake i te x=\sqrt[3]{t} mō ia t.